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SUMMARY

This thesis is about using structural-dynamics based methods to address the existing

challenges in the field of Structural Health Monitoring (SHM). Particularly, new structural-

dynamics based methods are presented, to model areas of damage, to do damage diagnosis

and to estimate and predict the sensitivity of structural vibration properties like natural

frequencies to the presence of damage.

Towards these objectives, a general analytical procedure, which yields nth-order expres-

sions governing mode shapes and natural frequencies and for damaged elastic structures

such as rods, beams, plates and shells of any shape is presented. Features of the procedure

include the following:

1. Rather than modeling the damage as a fictitious elastic element or localized or global

change in constitutive properties, it is modeled in a mathematically rigorous manner

as a geometric discontinuity.

2. The inertia effect (kinetic energy), which, unlike the stiffness effect (strain energy), of

the damage has been neglected by researchers, is included in it.

3. The framework is generic and is applicable to wide variety of engineering structures

of different shapes with arbitrary boundary conditions which constitute self adjoint

systems and also to a wide variety of damage profiles and even multiple areas of

damage.

To illustrate the ability of the procedure to effectively model the damage, it is applied to

beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff’s the-

ory, supported on different types of boundary conditions. Analytical results are compared

with experiments using piezoelectric actuators and non-contact Laser-Doppler Vibrometer

sensors.
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Next, the step of damage diagnosis is approached. Damage diagnosis is done using

two methodologies. One, the modes and natural frequencies that are determined are used

to formulate analytical expressions for a strain energy based damage index. Two, a new

damage detection parameter are identified.

Assuming the damaged structure to be a linear system, the response is expressed as the

summation of the responses of the corresponding undamaged structure and the response

(negative response) of the damage alone. If the second part of the response is isolated, it

forms what can be regarded as the damage signature. The damage signature gives a clear

indication of the damage. In this thesis, the existence of the damage signature is investigated

when the damaged structure is excited at one of its natural frequencies and therefore it is

called “partial mode contribution”. The second damage detection method is based on this

new physical parameter as determined using the partial mode contribution. The physical

reasoning is verified analytically, thereupon it is verified using finite element models and

experiments. The limits of damage size that can be determined using the method are also

investigated. There is no requirement of having a baseline data with this damage detection

method. Since the partial mode contribution is a local parameter, it is thus very sensitive

to the presence of damage. The parameter is also shown to be not affected by noise in the

detection ambience.
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Chapter I

INTRODUCTION AND BACKGROUND

There is a significant number of reported studies that are related to fracture of solids.

Some of the early works include the contributions of Inglis [30] and Griffith [24]. Griffith’s

[24] equation for a very high fracture strength is obtained by using lattice properties of

solids. The result of Inglis [30] is of the form of the stress concentration in a plate with an

elliptical hole, which becomes a crack in the limit, under a plane stress approximation of

linear isotropic elastic solids. Griffith’s theory to obtain an equation for fracture strength

of cracked structures is σ =
√

2Eγ/πa for brittle materials. In this equation γ is the

surface energy, a is the crack length, E the Young’s modulus and σ is the tensile fracture

stress. Then, Irwin [31] changed γ to γ + γp where γp is the plastic energy at the crack

tip. This modification resulted in combining the theoretical mechanics-based calculation of

stress intensity factors to tests and the interpretations of fracture toughness in metals and

alloys.

The studies provide an understanding of fracture mechanics in analysis and design of

aerospace structures. Fracture mechanics has also found application to other branches of

engineering. In these designs, it is hypothesized that a small crack in a structure has the

potential to grow to a critical crack length because of crack-driving mechanisms such as

large loads, repeated or cyclic loading (fatigue), and chemical reactions stemming from

such phenomenon as corrosion, stress corrosion or hydrogen embrittlement.

It is also well known that aerospace structures are subjected to repeated and cyclic

loading. In many cases, the structures are also exposed to corrosive environments. Thus,

during the service life of aerospace vehicles, it is necessary to inspect the vehicles for cracks

before they reach critical lengths and have the potential to cause a catastrophic failure of

the vehicle. This has resulted in the development of many non-destructive inspection meth-

ods (NDE) to detect damage in operating aerospace vehicles and estimate the remaining
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life of the vehicle by using various structural integrity programs. Early NDE techniques

included X-ray observations, eddy current techniques, ultrasonic techniques, thermography

etc. These techniques concentrate on local regions and are labor intensive. In many cases

these techniques result in observations only in regions that are identified to be critical re-

gions for potential damage growth and possible catastrophic failure regions. Thus, there is

a need to develop techniques that have applications for a very rapid inspection of areas of

damage and damage-like defects, without concentrating only in special regions and without

a complete tear-down of the vehicle for purposes of inspection.

This has resulted in a new subject of research area that is currently known as Structural

Health Monitoring (SHM), the process of implementing a damage detection and characteri-

zation strategy for engineering structures. Here, damage is defined as changes to the mate-

rial and/or geometric properties of a structural system, including changes to the boundary

conditions and system connectivity, which adversely affect the systems performance. The

field of SHM arose from the field of fracture mechanics.

In SHM the structure of the aerospace vehicle is dynamically excited. As is believed in

mechanics, the dynamic responses of the structure, with and without damage, are different

because of changes in stiffness due to damage. The goals of SHM have been to use these

differences in the dynamic responses to detect if a structure is damaged. If so, the goals are

to identify locations of the damage, their magnitude in terms of the damage lengths, and

their orientations. The third set of goals is to estimate the residual life of the structure on

the basis of expected missions of the vehicle and the associated loads. Knowledge of the

residual life is then used to decide if the part needs to be repaired or replaced to extend the

life of the structure. Most of the current state of research in the area of SHM, however, is

concentrated on the first two goals.

Restricting discussion to the first two goals of SHM, techniques are being developed to

detect damage, their location and to quantify their characteristics before they reach a critical

size. Very often, it is necessary to detect small and/or hidden damage in the structure of an

operating vehicle. Small sized damage in a structure result in small changes in the dynamic

response of the structure, as compared to the dynamic response of the structure that has

2



www.manaraa.com

not developed damage of these sizes. The objectives of the first two goals are to:

1. Identify the specific types of dynamic response of the structure that are sensitive to

these small areas of damage;

2. Employ appropriate actuators to excite the structures;

3. Use sensors that are capable of making measurements that can be used to identify the

small changes in the dynamic response;

4. Formulate a measure such as a damage index and develop analytical techniques that

are used in identification process;

5. Calculate the damage index and validate the identification technique.

Specifically, the objectives of this thesis are to develop supporting theoretical techniques

that model the damage in structures, attempt to separate the changes in the dynamic

response due to small areas of damage from the dynamic response of undamaged structures,

and to ascertain the sensitivity of damage to detection in structures, by use of techniques

that are known as perturbation techniques. Thus, the perturbation solution can be used

to develop techniques for readily filtering and identifying small changes in the dynamic

response due to the damage.
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Chapter II

LITERATURE SURVEY

2.1 A Review of The Review Papers on SHM

Broadly the literature for vibration based SHM can be divided into two aspects, the first

wherein models are proposed for the damage to determine the dynamic characteristics, also

known as the direct problem, and the second, wherein the dynamic characteristics are used

to determine damage characteristics, also known as the inverse problem.

In the literature, reviews in particular, for most cases both aspects are tackled together.

Doebling et al. [21], which stems from a report submitted by the same authors to the Los

Alamos National Laboratory [22], mainly addresses the inverse problem. Both the report

and the review, although overlapping, are a good starting point for a researcher interested

in identification of the damage using vibration based methods. The highlight of the review

is that it addresses the advantages of vibration based methods over wave propagation based

methods. The review also presents the advantages and disadvantages of methods based on

time domain and those based on modal domain. The review is very focussed on the later,

which is its strength since it addresses the nuances of modal domain based methods clearly

and also its weakness since other aspects of SHM are not dealt with. The review presents

few analytical models for the “forward problem” of natural frequency determination. The

core of the review is devoted to methods for damage identification. The review’s conclusion

section, like the introduction, is very insightful.

Next, the work by Dimargonas [14] is of importance for this thesis because it deals with

vibrations based SHM. The review paper primarily deals with the direct problem in the

modeling of damage, but it also deals with the inverse problem of damage identification

in some detail. The review is exhaustive, for pre-1996 literature, as far as enumerating

methods to model cracks. The upside of the review is the amount of literature presented,

the downside is that the introduction and conclusions are not given in depth, and the layout
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and organization do not allow the reader to get a good holistic picture of the two aspects

of SHM.

Both the above reviews can safely be recommended to any researcher intending to un-

derstand the origins of SHM for their respective merits. However, both of them are old and

the field of SHM has proceeded since. The next useful review for vibration based SHM is

by a team at Los Alamos research laboratory [62]. The bulky document has over 300 pages

and is an exhaustive literature review of an important phase of the field of SHM, i.e. from

1996 to 2001. The document explains in detail the directions and avenues that researchers

explored for damage identification, which included every conceivable physical quantity, from

natural frequencies, modes and curvatures to damping, temperature and moisture. All of

these various avenues taken by the researchers were explored and explained in the docu-

ment. Another noticeable feature of the review is the gradual shift in the center of gravity

of the research towards methodologies based on wave propagation. The document also suf-

ficiently addresses other important aspects of SHM, such as sensing, data acquisition, data

condensation and feature extraction. This high activity phase in the development of SHM

resulted in no clear winners. The competing technologies as observed in the review have

similar defects: lack of extensive statistical validation and lack of application to real life

structures.

Staszewski et al. [63] present a collection of papers written by experts in the field. The

papers are arranged randomly. This book can serve as a useful reference point if the topic of

reference is established. However, it may not be useful to researchers seeking an introduction

to the field.

The next review of interest for the present thesis is by Carden et al. [4]. The advantages

of the review are that it is recent, concise and does a good job in listing and explaining of

various methodologies used for damage diagnosis. The review is also much better organized

than prior reviews. In the opinion of the author this work can serve as a good first reference

for the inverse problem, that of damage diagnosis, because of its conciseness and good

organization. There are two other reviews that are focussed on specific aspects of the

inverse problem of SHM. The first is by Montalvo et al. [47] and deals with composites,
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and the second is by Ciang et al. [12] and deals with wind turbine systems. Both are

recommended for getting an introduction to different methodologies for damage diagnosis.

The latest review that the author came across was by Fan et al. [23]. The review is

specifically focussed on modal parameter based damage diagnosis. An important facet of

the review is that it gives a comparative study of different damage diagnosis based methods

using modal parameters and gives recommendations and conclusions for different methods.

The reviews give exhaustive survey of status of SHM at the time they were published.

A pithy review of literature dealing specifically with the objectives of the thesis is given

next. First a literature survey of the models that are available for the damage in structures

are given, and next a review of relevant damage diagnosis methods is given.

2.2 Damage Models

Before venturing into the literature review for this aspect of SHM, the usefulness and ob-

jectives of the methods to model damage should be understood so that the state of the art

is viewed vis-à-vis the objectives. Mathematical models that provide analytical theories to

model damage are useful in two ways: Firstly, they allow understanding of the physics be-

hind the problem which allow the explanation of experimental readings. These studies are

very useful in the development of new experimental techniques. Secondly and perhaps more

importantly, they allow prediction of structure’s response to dynamic excitation. Previously

most of the modeling of damage has been done using finite element method software. The

finite element method is a numerical method so it does not shed a lot of light, if any, on the

physics associated with the damage in structures. Based on this observation the problem

to be addressed may be described as follows:

“To develop generic methods that are applicable to various structures such as beams,

plates and shells, and to different types of damage such as a ‘V’ notch or a rectangular

notch, which provide a good understanding of the physics associated with the damage and

also can be developed into methods which compete favorably with the finite element method

as far as speed is concerned.”

At a broad level, researchers have tried to model damage based on expected physical
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behavior caused by the damage. After modeling the damage based on its expected physical

behavior, which would provide governing differential equations, they were solved either

exactly or using approximate methods. Therefore, the solutions available in literature are

either exact or approximate solution to an approximate model based on expected physical

behavior. It should be noted this approximation in the formulation was in addition to the

approximations or assumptions already made in formulating a structural dynamics theory,

e.g. for beams or plates. On account of the additional approximation made for the damage

in formulating the structural dynamics theory, the quality of different solutions obtained by

different approximate models is a moot point.

2.2.1 Analytical method for modes and natural frequencies of Euler-Bernoulli
beam

Consider Ostachowicz [50] as an example of a model based on expected physical behavior

of a crack , who modeled the crack as an elastic spring. The stiffness and flexibility of the

spring are calculated based on concepts of fracture mechanics. As a result, for the solution,

the beam is divided into as many elements as the number of the areas of damage, each with

its own governing differential equation. The boundary conditions are given by continuity

of displacement, moment and shear and discontinuity of slope given by local flexibility,

determined by the elastic hinge properties as defined above. Using the boundary conditions

and the governing differential equation, as many different displacement profiles are obtained

as there are segments (which is one more than the number of cracks). The disadvantages of

this model, which serves as an example for other similar models are given in the list below.

1. Representative disadvantages and limitations

(a) The model represents an exact solution to an approximate model based on ex-

pected physical behavior of the crack behaving as an elastic spring.

(b) The size of the problem increases. If there are n points of discontinuity along

the beam, the total number of simultaneous equations to be solved is 4(n+ 1) in

terms of 4(n+1) unknowns. In such a case, the difficulty in calculation increases

dramatically and in general can be very complex even for n = 2 as pointed out

7



www.manaraa.com

by Gurgoze [25].

(c) The model does not apply to other types of damage, such as a rectangular notch

which is a relatively common physical occurrence.

(d) The solution procedure, although applicable to a Timoshenko beam, would re-

quire even more computational effort than for the Euler-Bernoulli beam that is

solved in [50].

(e) The framework to extend the model to two and three dimensional elements such

as plates and shells is not given.

(f) The inertia effects of the crack are not taken into account.

(g) The procedure to determine the elastic properties of the hinge is empirical.

(h) The physical fact that the status of the crack “breathes” (changes from open to

closed) during vibrations is not considered.

(i) The neutral axis change due to the presence of the damage is not addressed.

Another similar concept that uses an extensional spring instead of an elastic hinge

is also present in literature. An example using this concept is by Krawczuk [35]. The

flexibility associated with damage was determined by using concept of stress intensity factors

in fracture mechanics. This concept had the same disadvantages as were listed above for

[50].

In an attempt to reduce the problem size, which was a big disadvantage of the model

by Ostachowicz [50], Christides and Barr [11] presented a theory which models the crack

by representing it by a single governing differential equation. The axial strain field was

modified such that its effect was beyond the crack in the form of the equation γxx =

[−z + f (x, z)]S(x, t), where γxx is the axial strain, z the out of plane transverse coordinate,

f(x, z) an arbitrary function and S(x, t) the strain function. The solution of the governing

differential equation was done using the Rayleigh-Ritz method.

The advantage of this approximate model was that it reduced the problem size. The

disadvantage was that it smeared the localized crack effect on the axial stress. Moreover,

it was based on an arbitrary function f(x, z) which modified the strain field and did not
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have any physical justification. The arbitrary function f(x, z) involved constants that could

only be determined by experiments. The solution is semi-empirical since a factor α which

governs the rate of stress decay was determined using experiments.

So the 9 disadvantages as listed in above list remain except that the item 1b is replaced

by the above limitation.

Shen and Pierre [60] used the Galerkin method instead of the Rayleigh-Ritz method to

solve the problem. They improved the convergence for the method by adding a function

to the Galerkin expansion that accounts for the effect of the stress concentration on the

continuity characteristics of the exact solution. They also used the finite element procedure

instead of experiments to determine the factor α, but the essential disadvantages associated

with the method proposed by Christides and Barr, as listed above, remained the same.

Qian [52] constructed a stiffness matrix for the damaged element based flexibility coef-

ficient determined using strain energy associated with the crack. The method to determine

the size of the element was not specified. The method had disadvantages from 1c to 1i in

the list given above. Law et al. [36] modeled the crack as an impulse drop in the bending

stiffness. The physics of the problem does reflect that the bending stiffness at the damage

location changes discretely but the mathematical explanation to define the change as an

impulse drop was missing. It was further assumed that the displacement modes of the dam-

aged beam were same as undamaged beam. [67] approximated the modal displacements

using Heaviside’s function, which meant that modal displacements were discontinuous at

the crack location.

The choice for researchers was to either have a theory which was unwieldy because of

the problem size or have a theory that was semi-empirical and lacked physical justification.

Both the choices had other disadvantages as given above in the list.

It is interesting to note that a model which had much lesser disadvantages was proposed

long back in 1949 by Thompson [66], who modeled the damage as a concentrated couple

at the location of the damage. The magnitude of moment associated with the couple is

determined using the change in cross sectional dimension rather than through concepts

of fracture mechanics. So, rather than modeling the beam with changed cross sectional
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dimension, it is modeled as a beam with constant cross section but modified load (moment).

The magnitude of the increase in the moment is given by a factor α which is computed based

on the ratio of the moment of inertia at the damage location (I ′) and that for the rest of

the beam (I0). The curvature equation for the beam is therefore written as

d2y

dx2
= − 1

EI0

M

α
α =

I ′

I0
(1)

This is an old work and has been neglected by recent researchers. However, it does

not suffer from several of the shortcomings of the recent model as shown in the list of

disadvantages above. The beam is tackled as a single beam, and hence the problem size

does not increase depending upon the number of damage locations. Several types of damage

can be tackled using this concept since computation of change in cross sectional moment

of inertia is much easier to calculate as compared to calculation of stress intensity factor

associated with the different types of damage. The concept can be easily applied to other

beam theories such as Timoshenko theory as well as other structures such as plates and

shells.

The disadvantages which remain with the model [66] are:

1. Lack of consideration of inertia effect of damage;

2. The process to apply the model as a generic procedure applicable to diverse set of

structures, and diverse types of damage is not given;

3. The breathing crack problem has not been addressed;

4. It has been not shown how the change in the neutral axis due to damage would be

accounted.

However, as the number of disadvantages are fewer in the model given by Thompson’s

[66], it is the opinion of the author that Thompson’s method holds promise, and should be

explored further to remove the remaining disadvantages.

The next interesting model based on expected physical behavior is by Joshi et al. [32],

which tackles the a different problem that of material instead of the cracks usually addressed
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in the literature. The problem however, is again addressed by dividing the beam into three

connected beams, with the beam that contains the damage having a different (reduced)

Young’s modulus. Indeed an important class of problems is addressed in this work, but

the approach of smearing the change in constitutive properties due to damage, which is

a localized effect, through the length of the beam containing the damage has not been

validated. In addition, the model suffers from all the 9 disadvantages enumerated above

for the model given by [50]. Some of the variables used in the formulation are not defined

before their first use, which can make reading a little confusing.

An advancement in the field of modeling of cracks can be regarded by Chondoros et al.

[10] and Luo and Hanagud [41]who attempted to tackle the non-linearity of the vibration

problem by using a concept of “breathing cracks.” They argued that during vibrations a

crack does not always remain open but the two surfaces associated with the crack move

towards and away from each other, thereby making the problem non-linear. They then

simplified the problem by assuming that the crack is either fully open or fully closed. They

also assumed that during vibrations, when the beam reaches its undeformed state, the crack

status switches from open to closed or vice versa in a discrete way. The argument for this

model was that it was better than a model which assumes the crack open at all times.

The open crack condition as discussed by Chondros et al. [10] was based on another

work by the same authors [9], which was a generalization of the model proposed by [11] and

hence having the same disadvantages. In effect the non-linearity associated with crack is

accounted by using a model that was physically not justified.

Another stream of thought that was developing was that of perturbation methods. Bayly

[3] and Happawana et al. [26] studied the effects of the magnitude of perturbations (dis-

orders) on the localization of modal shapes for non-linear vibrating systems. By applying

the regular perturbation technique to the characteristic equation of the system, they ob-

tained algebraic expressions for the eigenvalues as a power series in the small parameter or

perturbation with acceptable accuracy.
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Luo and Hanagud [41] formulated an integral equation to model a structure with notch

type damage and successfully demonstrated an analytical solution technique by using per-

turbation methods. Next, Luo and Hanagud [42] and subsequently Lestari [37] proposed

a perturbation method for mode shapes and natural frequencies to describe the behavior

of damaged beams. Lestari et al. [?] used Fourier sine series expansion for the modes of

damaged beams with simply-supported ends. Sharma [57, 58], discussed an “approximate

solution” for the damaged plate in terms of a double Fourier sine series for a plate with

simply-supported boundary conditions on all four edges.

The important development in the above methods was not the perturbation of mode

shapes and natural frequencies, but the mathematical treatment of the damage. By math-

ematically representing the drop in the thickness at the damage location as dirac delta

function, the arbitrariness of the previous models was removed. It should be noted that

previous models of the damage represented the damage by elastic elements such as springs,

whose elastic properties were determined based on arbitrary functions. The mathematical

model of damage was not based on expected physical behavior implemented by replacing

the damage with a suitable elastic element like a spring or a hinge but on actual structural

layout. The two reasons together preempted the increase in the problem size since the

vibrations was represented by a single governing differential equation. The perturbation

allowed the tackling of the non-linearity associated with the damage.

The remaining disadvantages, however, were not addressed. No representation was given

for arbitrary shaped damage. The method showed promise to be applicable to higher order

beam theories or structures like plates and shells. However, the application was given to

only simply-supported beam and plate. A solution applicable to a generic structure was not

given. For both the cases, Lestari and Sharma had errors in the solution of the perturbed

differential equation, which were corrected in [17], as they did not obtain the complementary

solution but only the particular integral for the higher order equations. The treatment of

inertia effects was tentative since it was present in the thesis by Lestari [37] but removed

in the publication resulting from it [?].
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2.2.2 Damage sensitivity: effect of shape of damage and beam shape

Damage occurs in a variety of shapes and sizes and can occur in beams of different shapes.

Most of the literature, however, concentrates on either sharp cracks or rectangular notches

in uniform beams of rectangular cross sections. A study of the effect of damage shape on

the vibration characteristics of beams of different shapes has not been done to the best of

the author’s knowledge.

The objective is to ascertain the effect of the same type of damage placed on beams

of different cross sections, such as a T-beam and a rectangular beam. Although a direct

precedent for modeling different types of damage using vibration-based techniques was

previously not found in the literature, work has been done in the area by using Lamb waves

for such a characterization by Cho and Rose [7]. Experimental results for a composite

T-beam are presented [49], but no theoretical model for damage is given.

2.2.3 Damaged modes and frequencies using Timoshenko beam theory and
Kirchhoff plate theory

Whether it is because of the complexity of the proposed damage models or the lack of

justification or availability of arbitrary functions is not known, but the literature associated

with their application to higher order theories or more complex structures such as plates or

shells definitely tapers off. Moreover, the methods used were on similar lines as those used

for Euler-Bernoulli beams, and so the same limitations and disadvantages were applicable.

Swamidas [64] used natural frequencies to detect damage for cracked Timoshenko beams

for simply-supported beams. It was assumed that there is local drop of stiffness at the

damage location denoted by EIc. This quantity was calculated based on concepts of fracture

mechanics and the same limitations as listed previously were also applicable to this method.

After derivation of the governing differential equation, it was solved with the Galerkin

method using modes of an un-cracked beam as comparison functions.

Another attempt to model damage in Timoshenko beams is by Khaji et al. [33] who

modeled the damaged beam using the same principles as were used by Ostachowicz [50] for

Euler-Bernoulli beams. The closed-form solution for their approximate model is presented
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for vibration of damaged Timoshenko beams. The damage was represented as a rotation

discontinuity. The damaged Timoshenko beam with some commonly occurring boundary

conditions, damage parameters and beam parameters are considered. The results showed

close agreement with results from finite element models. Another attempt to determine

natural frequencies of a damaged Timoshenko beam based on rotational spring model is

presented by Li [39]. Loya et al. [40] showed, however, that merely assuming rotational

spring at the crack location is not sufficient to model a crack. They assumed an addi-

tional extensional spring at the crack location. The extensional and the rotational spring

flexibilities were determined using empirical relations cited from previous works.

In the meantime, the problem of Kirchhoff’s plates with damage was tackled by Sharma

et al. [59, 57], for a straight line damage oriented parallel to one of the plate coordinate axes.

This was an extension of the work by Lestari [?] where the damage was modeled mathe-

matically instead of an arbitrary elastic element. The solution was done using perturbation

methods. The solution was presented only for the case of plates simply-supported on all

four edges. Unfortunately, there were errors both in the perturbed differential equations

and their solutions [17]. The technique had advantages over existing techniques as detailed

in the previous section regarding Euler-Bernoulli beams, but they were not fully exploited.

2.3 Damage Diagnosis Methods-Vibrations

Early vibration based measures used to detect damage were based on changes in natural

frequencies; see Cawley et al. [5], Man et al. [44], and Carden et al. [4]. Natural frequencies

are global parameters and give a global indication of change in the structural mass and

stiffness distributions. The advantage of using natural frequencies as a damage measure is

that it is easy to obtain their values. The disadvantage is that, as global parameters they

can be used only as indicative of the presence of damage. Also, since natural frequencies

change due to environmental conditions like temperature, they cannot be considered as

reliable indicators of damage.

As already mentioned earlier, the natural frequencies are functions of stiffness and mass.

The change of inertia or kinetic energy effect due to damage the can be of the same order
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of magnitude as that of the change of stiffness, but this inertia effect due to change in the

mass distribution is not considered by most researchers in the literature. A damage can

result in change of both the parameters, so severe damage may result in smaller change

in natural frequencies than mild damage. Hence, even the severity of damage cannot be

confidently adjudged using changes in natural frequencies. The change in natural frequencies

is dependent on the effective change in mass and stiffness. Effective change in mass or

stiffness is dependent on the location of damage and modal energy associated with the

damage. So inherently the inverse problem (problem of getting the damage parameters

from the vibrational characteristics) has a non-unique set of solutions.

Another vibration based measure used in damage detection is the mode shapes; see Ho

and Edwins [28], West [69] and Carden et al. [4]. Use of mode shapes alleviates some of

the shortcomings of using natural frequencies since it can help locate the damage. Because

the response caused by damage is not erratic, the change in the mode shape can be directly

related to severity of the damage. However, the change in mode shape is very small and

sometimes can be of the order of the noise during measurements, making it difficult to

ascertain the change; see Pandey and Biswas [51] and Qiao et al. [53] .

To improve the sensitivity of mode shapes as damage indicators, researchers proposed

curvature for damage detection [51]. In the absence of any external moment acting at the

damage location, the bending moment should be continuous across the damage. Bending

stiffness is not continuous since the depth of beam and hence the area moment of inertia, is

not continuous. Therefore, the bending stiffness, which is proportional to the area moment

of inertia is not continuous. This further implies that curvature, which is the ratio of bending

moment and bending stiffness, is not continuous across the damage. It was successfully

shown by Chandrashekar and Ganguli [6] and Lestari [37] that curvature mode shapes can

be effectively used to determine and characterize damage. Several mathematical procedures

were proposed to increase their sensitivity.

However, curvature is often a secondary result [53] or it is not measured directly. It

may be calculated by the numerical differentiation of the mode shapes. So, no matter

how well the mathematical differentiation is done, the sensitivity of the curvature as an
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effective damage measure depends on the accuracy of mode shapes measurements, and

their sensitivity to damage.

Strain energy is a product of discontinuous curvature with discontinuous bending stiff-

ness. Next, the researchers exploited this double discontinuity of strain energy to devise

methods to identify and characterize damage. Wang et al. [68] first proposed a damage

index as a function of strain energy. Kim et al. [34] formulated a damage index without

requiring the knowledge of the dynamic response of the undamaged structure. She et al.

[61] formulated a distributed parameter damage index, Modal Strain Energy Change Ra-

tio (MSECR), based on the ratio of the change in strain energy of each element to the

strain energy of undamaged state of that element. The stiffness of the element was kept

the same for the undamaged as well as damaged structure for strain energy computations

of both states of the structure. The quality of this indicator is improved by summing the

contributions of multiple modes in a normalized fashion as a cumulative damage index.

Choi et al. [8] gave a different damage index based on strain energy ratios. For this

they divided the beam into a number of elements. A ratio of strain energy of each element

with respect to all elements in the structure is formulated for the undamaged as well as the

damaged structure. Cornwell et al. [13], implement the damage index for two dimensional

structures.

Damping ratios were used by Modena et al. [46], and frequency response functions by

Schulz et al. [56] to determine damage in structures. Ho and Ewins [27] formulated a

“Damage Index” as the quotient squared of the corresponding modal curvatures of the

undamaged and damaged structure.

Wang, Xu and LLoyd [68] first proposed a damage index as a function of strain energy.

Kim, Ryu, Lee, and Choi [34] formulated a Damage Index without requiring the knowledge

of the dynamic response of the undamaged structure. Intrinsic Fabry-Perot optical fiber

sensors were attached to a steel girder of the Sungsan Bridge which is one of the longest span

bridges over the Han River in Seoul, Korea. The tests were performed as parts of safety

diagnosis of the bridge. Numbers of strain gauges, acceleration sensors and a deflection

gauge as well as optical fiber sensors were used. Static and dynamic loads were applied to
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the bridge by using 30 ton trucks. The optical fiber sensor system showed good responses to

the static and dynamic loading with a resolution of approximately 0.12 micro units strain.

The optical fiber sensors were used as elements of the bridge monitoring system.
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Chapter III

RESEARCH ISSUES AND PROBLEM ADDRESSED

3.1 Research Issues - Direct Problem

Before the research issues associated with the damage modeling aspect of SHM are high-

lighted, it is helpful to reiterate the usefulness and objectives associated with that aspect.

As mentioned in chapter 2 the mathematical models that give analytical theory to model

damage are useful in two ways: Firstly, they allow understanding of the physics behind

the problem which allow the explanation of experimental readings. These studies are very

useful in the development of new experimental techniques. Secondly and perhaps more

importantly, they allow prediction of response of the structure. Currently most of the

modeling of damage is done using finite element software. The finite element method is

a numerical method so it does not shed a lot of light on the physics associated with the

damage in structures. Based on this the problem may be defined as follows:

“To develop generic methods that are applicable to various structures such as beams,

plates and shells, and to different types of damage such as a ‘V’ notch or a rectangular

notch, which provide a good understanding of the physics associated with the damage and

also can be developed into methods which compete favorably with the finite element method

as far as speed is concerned.”

In the opinion of the author, based on the literature survey, unfortunately, this aspect

of SHM has not received the emphasis it deserves. The number of elements required to

model a damaged element is very high and is limited by the size of damage, at least in

the vicinity of the damage. So, in a beam of length 1 m and cross sectional dimensions

0.02 m × 0.005 m, if there is a through-thickness damage of depth 0.0005 m, the elements

required to model this damaged beam would be two-dimensional plane stress elements with

the smallest elements being of the order of 0.0005 m. This increases the computational

requirement from using a few beam elements for undamaged state to several plane stress
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elements for the damaged state. This increases the time required to solve the problem by

several orders of magnitude.

The damage models presented, rather than mathematically modeling the damage as a

geometric discontinuity, have the physics associated with the problem already conjectured

. It is already firmly established in the mind of some researchers in this field that only

stiffness at the damage location is reduced. No wonder, that the physics reflected by these

models reflect the conjecture rather than the actual physics. The reason why researchers

followed this path was, as given in chapter 2, the origins of the field of SHM lied in the field

of fracture mechanics. The field of fracture mechanics deals with fatigue and statics. At the

damage location the only physical quantity affected is the only physical quantity considered,

the stiffness. As far as structural dynamics is concerned, however, another physical quantity

involved: inertia. This is manifested as mass per unit length for beams and mass per unit

area for plates. Mass per unit length or per unit area changes due to redistribution of mass

due to the damage during vibrations. Whether these inertial effects are consequential or

not may only be determined using mathematical models.

One unique effort in this direction was conducted by Professor Hanagud and cowork-

ers, by presenting a mathematical model for the damage which involved both inertial and

stiffness effects. The solution of this model was attempted using a perturbation method.

However, the fully utility of the method was not apparent due to errors in arriving at the

perturbed differential equation and their solutions. Also, the method was applied to only

simply-supported boundary condition for Euler-Bernoulli beam theory and Kirchhoff’s plate

theory. The damage models were presented for only very limited set of damage.

The objective of the PhD thesis is to add incremental value by addressing the research

issues that arise from the state of the art. It is good to keep in mind the overall objective,

as given above, to keep the perspective focussed. With regard to that incremental research

issues are mentioned below.

In spite of considerable progress in the damage identification using vibration-based meth-

ods, fairly successful algorithms to model or detect damage do not exist as concluded in all

the reviews since 1995. In 1995 in the review published by Dimarogonas [14], it is concluded

19



www.manaraa.com

“A consistent cracked beam vibration theory is yet to be developed.” In 2005, in another re-

view about vibration based structural health monitoring, Carden et al. [4] conclude, “There

is no universal agreement as to the optimum method for using measured vibration data for

damage detection, location or quantification.” Similarly, in 2007 Montalvao et al. [47] state

as one of the conclusions, “There is no general algorithm that allows the resolution of all

kinds of problems in all kinds of structures.”

Let us now examine the state of the art with reference to the problem defined above.

Most of the damage models in literature restrict themselves to Euler-Bernoulli beams. Even

in the domain of Euler-Bernoulli beams they restrict themselves to a few boundary condi-

tions and damage types. None of the methods given in the literature provide a framework

that is applicable to all elastic structures. An important understanding regarding the re-

search issues vis-à-vis the damage models is that the problem synthesis for damaged elastic

elements invariably includes two parts, the formation and the solution of the governing

differential equation(s).

There are primarily three kinds of ways by which the governing differential equation is

formulated. The first is dividing the beam at the damage location and substituting it with

an elastic element. The primary disadvantage with this method is the manifold increase in

problem size. The order of the solution to the problem increases. If there are n discontinuity

points on the beam, the total number of coefficients to be determined becomes 4(n + 1),

which leads to a requirement to solve 4(n + 1) equations simultaneously . In such a case,

the difficulty in calculation increases dramatically and in general can be very complex even

for n = 2 as pointed out by Gurgoze [25].

The next method is to treat the beam as a single beam, but smearing the bending

stiffness discontinuity due to the damage over the whole or part of the beam. The primary

disadvantage with this model is the inaccurate representation of the physics, since the

bending stiffness drops locally at the location of the damage only.

The third method assumes local drop of stiffness. The disadvantages associated with

this method, which are also common to other two methods, are as follows:

1. The model represents an exact solution to an approximate model based on expected
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physical behavior of the crack behaving like an elastic element.

2. No models are given for other types of damage, say a rectangular notch or a V-notch,

which are a common physical occurrence.

3. The modeling of damage is based on arbitrary and empirical functions.

4. The framework to extend the model to two dimensional elements like plates and

shells is not given. There are very few examples in which the method is extended to

Timoshenko beam theory.

5. The inertia effects of the crack are not taken into account.

6. The physical fact that the status of the crack ‘breathes’ (changes from open to closed)

during vibrations is not considered.

3.2 Research Issues - Inverse Problem

Two techniques in the field of SHM are wave propagation based techniques Raghavan and

Cesnik [54] and vibration based techniques Carden et al. [4], Montalvao et al. [47], Fan et al.

[23]. It is sometimes argued that techniques based on wave propagation are more sensitive

to damage detection than those based on vibration [63]. The advantages with regard to

sensitivity of wave-propagation-based techniques arise due to the selected damage detection

parameters, such as the reflected wave due to the damage. The asserted shortcoming of

lack of sensitivity of vibration-based techniques has several reasons. The primary among

them being that the order of changes in damage detection parameters for small defects is

of the order of the noise in the detection ambience. However, it is accepted that vibration-

based techniques are easier to implement and the data obtained by them can be used

to determine the vibration characteristic of the damaged structure Fan et al. [23]. For

example, the modes determined by vibration-based techniques can be used to determine

the subsequent response of the structure after the damage has been identified and defined.

Vibration-based techniques are also able to examine relatively large areas of the structure

as well as inaccessible areas. The natural vibrations of the structure can be used as the

excitation rather than external excitation as required in wave-propagation-based techniques.
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The viewpoint of the reviews for vibration-based structural health monitoring is similar.

Regarding the sensitivity of vibration-based methods, the review by Carden [4] states “Most

notably, the sensitivity and measurability of the modal parameter shifts due to localized

damage is a matter of disagreement amongst the research community.” Lack of sensitivity

of vibration based methods is also discussed in the section 2.8.1 of a book by Staszewski et

al. [63].

As can be seen in the discussion in the previous paragraph, vibration-based methods

have strong advantages over wave-propagation-based methods except their lack of sensitivity

towards damage detection. It is therefore proposed that a vibration-based method, that

has a strong sensitivity to damage would be an open research issue.

3.3 Damage Sensitivity

Another research aspect which has not received much attention is the sensitivity of damage

to the shape of the structure. For example, it would be interesting to study the shape of

the beams in which the damage is more easily identifiable compared to those in which it is

more difficult.

3.4 Problems Addressed

The work associated with this thesis, as probably with most research works of this nature,

started with a bottom up approach.

1. The first problem is to obtain time domain analytical solutions for perturbed Euler-

Bernoulli beam equations, due to notch type of damages, using superposition of modes,

for boundary conditions that yield orthogonal modes. In this method the rather

than assuming an elastic element at the notch location or using assumed modes or

any other approximation for the crack behavior, the notch dynamics is encapsulated

through perturbation methods in the change of cross-section characteristics like area

and area moment of inertia. The model includes the mass change which has till

now been neglected by researchers. Mass change is included as the change in cross-

sectional characteristic ‘area of cross-section’. The natural frequencies and mode
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shapes are perturbed using principles of perturbation method. This problem addresses

the correction to the problems with the solution of a damage modeling procedure

presented by Lestari et al. [?] for Euler-Bernoulli beams as given by Dixit and Hanagud

[17].

2. The success of a structural health monitoring technique depends on the separation of

small changes in dynamic response due to structural damage from the gross dynamic

response of the structure, which results from a selected excitation. To isolate the

small changes of dynamic response from higher-order effects such as rotational kinetic

energy and transverse shear deformation, the model developed for Euler-Bernoulli

beams was extended to Timoshenko beams. It should be noted that Timoshenko

beam model includes rotational kinetic and transverse shear effects. This was done

by Dixit and Hanagud [15].

3. At this point it was realized that there are similarities in the derivations required to

model the damage of beams using Euler-Bernoulli beam theory and Timoshenko beam

theory. To exploit these similarities a generalized procedure [20] was developed. The

procedure was shown to be applicable to self adjoint systems with discontinuities. It

was verified for Euler-Bernoulli beams [18], Timoshenko beams [15], Kirchhoff’s plates

[19].

4. The damage model is applied to plate structures using Kirchhoff’s plate theory [19],

the following improvements were made over the work of Sharma et al. [59]. Cor-

rections were made to both the perturbed governing differential equations and their

solution. The damage model presented can account for damage oriented in any arbi-

trary direction. The method was extended to other boundary conditions other than

simply-supported on all four ends as tackled by Sharma et al. [59].

5. The research issue associated with the inverse problem was also tackled in a similar

way as for the direct problem. First, the state of the art existing in literature was

improved. For an analytical expression for a damage index based on strain energy
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was derived using the analytically derived mode shapes and natural frequencies for

damaged beams. This damage index is given by Dixit and Hanagud [18].

6. With an eye on fulfilling an important of criteria vibration-based SHM and also its

primary disadvantage as compared to wave-propagation-based SHM, that of sensitiv-

ity of damage detection, a new physical parameter is identified and is called “partial

mode contribution”. The physical reasoning behind the partial mode contribution

was verified using the analytical derivation. This led to the next work for this thesis -

that of using partial mode contribution for damage detection. This work is presented

in by Dixit and Hanagud [16].

3.5 Organization of the Thesis

To make the material presented in this thesis easy to understand and to preempt redun-

dancy the organization of the material is altered from the chronological order of work as

performed. The correct chronology of development of work for the thesis entailed obtain-

ing the corrected version of the damage model presented by Lestari [?], presented in by

Dixit and Hanagud [17]. Based on the corrected modes and natural frequencies obtained,

an analytical expression for a damage index based on strain energy was obtained by Dixit

and Hanagud [18]. The same principles as those used to find the analytical expressions of

mode shapes and natural frequencies for Euler-Bernoulli beams were used to find those for

Timoshenko beams. It was discovered that the derivations for both theories were similar,

which gave birth to a general framework to model areas of damage for elastic structures.

Almost concurrently the physical reasoning behind a unique physical quantity for damage

detection was discovered and was named partial mode contribution and the corresponding

method called “Partial Mode Contribution Method.” Eventually the research progressed to

application to plates using Kirchhoff’s plate theory and then applying to different shapes

of beams to ascertain the sensitivity of damage.

The order in which material in this thesis is presented is as follows. First, the full

derivation of a damage model solved using perturbation methods is given in chapter 4,

since it is essentially the heart of the thesis. As mentioned earlier the thesis started with
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correcting the solution presented by Lestari [?], this is presented in chapter 2. Next, the

analytical derivation to determine mode shapes and natural frequencies of Euler-Bernoulli

beams and also using them to formulate a damage index based on strain energy is presented

in 6. Next, results for Timoshenko beam theory, and comparison with results obtained

using Euler-Bernoulli beam theory, are given in chapter 7. A damage model for the damage

oriented in arbitrary directions is presented to obtain analytical results for Kirchhoff’s

plate theory in chapter 8. Next, the interesting problem of determining the sensitivity that

damage has to the beam shape is presented in chapter ??. This is done by using damage in

a T beam and a rectangular beam. The first solution to the inverse problem using analytical

expressions of a new damage index based on strain energy is presented in chapter 6. A new

damage identification technique called the Partial Mode Contribution Method is presented

in the next chapter of this thesis, chapter 9. Finally conclusions and direction for future

research based on the work presented in this thesis are presented in the last chapter of this

thesis, chapter 10.
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Chapter IV

A GENERAL PROCEDURE TO MODEL DAMAGES SOLVED USING

PERTURBATION METHOD

This chapter is to a large part a reproduction of a published work done by the author [20]. It

presents a generic framework that deals with solution of the eigenvalue problem associated

with vibration of elastic structures comprised of discontinuous domains, which constitute

self-adjoint systems. The general representation of the eigenvalue problem is given by a

homogeneous differential equation with non-constant coefficients. The damage represented

mathematically by damage profile functions and a perturbation of eigenfunctions and eigen-

value is used to change the homogeneous differential equation with non constant coefficients

to a series of non-homogeneous differential equations with constant coefficients. Orthog-

onality of modes is then used to solve those equations to obtain expressions for nth order

perturbed eigenfunction and eigenvalues.

4.1 General Development

The general eigenvalue problem to determine the mode shapes and natural frequencies of

elastic structures such as rods, beams, plates and shells is given in [45]

Lφ(xi)− λMφ(xi) = 0 (2)

where L is the stiffness operator, M is the inertia matrix and λ is the eigenvalue. The

order of L is an even integer that is given by 2p (p is a natural number). The equation is

valid for conservative distributed parameter structures, which represent a very large and

important class of systems, namely self-adjoint systems. Here λ = ω2 where ω is the natural

frequency and φ is the eigenfunction or the mode shape, and xi the spatial independent

variable, (i represents the direction). The xi denotes the one-dimensional space in case of

beams, two-dimensional space in case of plates and shells and three-dimensional space in

case of three-dimensional structures. The displacements and rotations corresponding to the
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spatial dimension xi are ui and θi, respectively. In case of an Euler-Bernoulli beam, the

variables of Eq. (2) are given by

L =
d2H33(x1)

dx2
1

d2

dx2
1

M = ρ(x1)A(x1) φ(x1) = u1(x1) H33(x1) = E(x1)I3(x1) (3)

and in the case of Timoshenko beam theory their values are

L =

 −dK22(x1)d
dx21

dK22(x1)
dx1

−K22(x1)d
dx1

K22(x1)− dH33(x1)d
dx21

 M =

 ρ(x1)A(x1) 0

0 ρ(x1)I(x1)


φ(x1) =

 u1(x1)

θ3(x1)

 K22(x1) = κG(x1)A(x1) (4)

where E, G, κ and I are the Young’s modulus, shear modulus, shear factor and area moment

of inertia, respectively, ρ is the density, A is the area, u1 is the transverse displacement,

and θ3 is the sectional rotation. All the quantities are functions of spatial dimension x1.

In case of plates or shells L is a partial differential operator. For Kirchhoff’s plate theory

the variables of equation (2) are given by [2]

L = ∇2D∇2 − (1− ν)

(
∂2D

∂x2
2

∂2

∂x2
1

− 2
∂2D

∂x1∂x2

∂2

∂x1∂x2
+
∂2D

∂x2
1

∂2

∂x2
2

)
φ = u3(x1, x2)

D =
E(x1, x2)h(x1, x2)3

12(1− ν2)
M = ρ(x1, x2)h(x1, x2) (5)

and for Mindlin plate theory their values are given by [55]

L =


−∂D∂

∂x21
− ∂D/2(1−ν)∂

∂x22
+ F − ∂Dν∂

∂x1∂x2
− ∂D/2(1−ν)∂

∂x2∂x1
−F ∂

∂x1

−∂D/2(1−ν)∂
∂x1∂x2

− ∂Dν∂
∂x2∂x1

−∂D/2(1−ν)∂
∂x21

− ∂D∂
∂x22

+ F −F ∂
∂x2

∂F
∂x1

∂F
∂x2

−∂F∂
∂x21
− ∂F∂

∂x22



M = ρ(x1, x2)h(x1, x2)


h(x1,x2)2

12 0 0

0 h(x1,x2)2

12 0

0 0 1

 φ =


θ1(x1, x2)

θ2(x1, x2)

u3(x1, x2)


F = κG(x1, x2)h(x1, x2) (6)

In the above equations, h(x1, x2) is the thickness of the plate, θ1(x1, x2) and θ2(x1, x2)

are plate rotations about the x1 and x2 axis, respectively, and u3(x1, x2) is the transverse

displacement.
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The boundary conditions for equation (2) are given by

Biφ(xj) = 0 i = 1, 2 . . . , p (7)

where Bi is a differential operator of maximum order of 2p − 1, where p was defined with

reference to the order of the eigen value problem. Examples of clamped, pinned and free

boundary conditions for Euler-Bernoulli are given by

Bi =

 1

d
dx1

 @x1 = clamped Bi =

 1

EI d2

dx21

 @x1 = pinned

Bi = EI


d2

dx21

d3

dx31

 @x1 = free (8)

and for Timoshenko beam theory by

Bi =

 1 0

0 1

 @x1 = clamped Bi =

 1 0

0 EI d
dx1

 @x1 = pinned

Bi = EI

 d
dx1

−1

0 d
dx1

 @x1 = free (9)

The boundary conditions for an edge parallel to x1 for clamped, pinned and free edges of

the plate, respectively, according to Kirchhoff’s plate theory, are given by

Bi =

 1

∂
∂x1

 @x1 = clamped Bi = EI

 1

∂2

∂x21

 @x1 = pinned

Bi = EI


∂2

∂x21
+ ν ∂2

∂x22

∂Dν
∂x1

∂2

∂x22
+ ∂D

∂x1
∂2

∂x21
+ 2∂D(1−ν)

∂x2
∂2

∂x1∂x2

 @x1 = free (10)

and for Mindlin plate theory are given by

Bi =


1 0 0

0 1 0

0 0 1

 @x1 = clamped Bi =


D ∂
∂x1

Dν ∂
∂x2

0

0 1 0

0 0 1

 @x1 = pinned

Bi = D


D ∂
∂x1

Dν ∂
∂x2

0

D ∂
∂x2

D ∂
∂x1

0

F 0 F ∂
∂x1

 @x1 = free (11)
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Figure 1: Rectangular notch beam
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Figure 2: V-notch beam

4.1.1 Damage model

The damage model presented in this chapter models the change in cross sectional thickness

at the damage location. If the damage depth is hd(xi) then at the damage location the depth

becomes h − hd(xi), where h is the constant depth at the undamaged location. Further a

quantity h̄d is defined which gives the average depth of the damage given by

h̄d =

∫
Ω

hd(xi)dxi (12)

where Ω gives the domain of damage. Therefore, the depth of the structure is given by

h(xi) = h− h̄dγ(xi) = h [1− εγ(xi)] ε =
h̄d
h

(13)

where γ(xi) is the damage profile function and ε gives ratio of the depth of damage to the

depth at the undamaged location.

For example, consider a beam of uniform rectangular cross section of width b and depth

h as shown in figure 1. A rectangular through-thickness notch shaped damage is located
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at x = xd with a width of ∆l and depth of hd. Notice in this case h̄d = hd. The damage

profile function is given by

h(x1) = h− h̄d [H(x1 − x1d)−H(x1 − x1d −∆l)] = h(1− εγ(x1))

γ(x1) = H(x1 − x1d)−H(x1 − x1d −∆l) (14)

Here H(x − x1) denotes the Heaviside function. Other representations of the crack profile

functions of beams for different types of damage are given as follows:

For a V-shaped notch as given in figure 2:

γ(x1) =< x1 − x1d > −2 < x1 − x1d −∆l/2 > + < x1 − x1d −∆l > (15)

where <> denotes ramp function. For a half V notch

γ(x1) =< x1 − x1d > −H(x1 − x1d −∆l)+ < x1 − x1d −∆l > (16)

For a saw-cut damage the definition of differentiation is used [1]

γ(x1) = H(x1 − x1d)−H(x1 − x1d −∆l) ∝ ∆lδ(x1 − x1d) = k∆lδ(x1 − x1d) (17)

Damage does not always occur in shapes giving regular profiles. In the cases where damage

cannot be represented as a regular profile as listed above, a convolution integral is used

to obtain the expressions for mode shapes and natural frequencies using the crack profile

function of saw cut damage as described later in the chapter.

The concept of damage profile functions may be applied to multi-dimensional structures

and multi-dimensional damage. For a plate, damage profile function defined for a sharp

crack is given by

γ(x1, y1) = [(x1 − x1d)−H(x1 − x1d −∆l1)] [H(y1 − y1d)−H(y1 − y1d −∆l2)]

= ∆l1∆l2δ(x1 − x1d)δ(y1 − y1d) (18)

where ∆li gives the width of the damage in the ith direction.

Multiple areas of damage may be tackled by summing the different crack profile functions

for individual damage, to represent a consolidated crack profile function
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γ(xj) =
N∑
i=1

γi(xj) (19)

where N is the number of distinct areas of damage. The change in the depth also

manifests itself as changes in cross sectional properties. The change in moment of inertia

and cross sectional area can be written as

I(x) =
r∑
j=0

εjIj A(x) =
r∑
j=0

εjAj (20)

For example, for a rectangular beam the moment of inertia is given by

I =
bh(x)3

12
=
bh3

12

[
1− 3εγ(x) + 3ε2γ2(x)− ε3γ3(x)

]
(21)

Comparing with equation (20) one finds that

I1 = −3I0γ(x) I2 = 3I0ε
2γ2(x) I3 = −ε3γ3(x)I0 I4 = 0 (22)

Based on the above explanation, the stiffness and mass operator are thus written as

L =
r∑
j=0

εjLj M =

q∑
j=0

εjMj (23)

For example, the stiffness operator for Timoshenko beam theory can be written as

L =

 −dκG(A0+εA1+ε2A2)d
dx21

dκG(A0+εA1+ε2A2)d
dx1

−κG(A0+εA1+ε2A2)d
dx1

κG(A0 + εA1 + ε2A2)− dE(I0+εI1+ε2I2+ε3I3+ε4I4)d
dx21

 (24)

If the area moment of inertia values are taken for a beam with rectangular cross section

with a rectangular notch, as given in equation (22), I4 = 0. Comparing (23) and (24), r = 3

L0 =

 −dκGA0d
dx21

dκGA0d
dx1

−κGA0d
dx1

κGA0 − dEI0d
dx21

 L1 =

 −dκGA1d
dx21

dκGA1d
dx1

−κGA1d
dx1

κGA1 − dEI1d
dx21


L2 =

 −dκGA2d
dx21

dκGA2d
dx1

−κGA2d
dx1

κGA2 − dEI2d
dx21

 L3 =

 0 0

0 −dEI3d
dx21


(25)

In the above equations, the subscript 0 is for the nominal quantities at an undamaged

location.
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4.1.2 Perturbation

As the quantity ε is small, the function φ(xi) and λ are expanded using perturbation theory

[48] as the following series

φ(xi) = φ0(xi) + εφ1(xi) + ε2φ2(xi)− . . . λ = λ0 + ελ1 + ε2λ2 − . . . (26)

A similar equation was used in [59]. The superscripts of φ and λ denote the order of

perturbation. It is essential to note that unlike in the equations (20) and (23) where the

coefficients of εi are known, in the perturbed equations the coefficients are unknown.

4.1.3 Non-dimensionalization

The next step is non-dimensionalization, which identifies the number of parameters affecting

the results. The contents of the equations are non-dimensionalized using

ζi =
xi
L

uzi =
ui
L

θzi = θi γz(ζi) = γ(xi) (27)

The subscript z is used for the non-dimensionalized quantity.

4.1.4 Perturbed equations

Equations (23), (26) and (27) are substituted in (2) and then they are non-dimensionalized

to give the equations of order 0, 1, 2 and 3 in ε as

ε0 : Lz0φ
0 − λ0

zMz0φ
0 = 0 (28a)

ε1 : Lz0φ
1 − λ0

zMz0φ
1 = λ1

zMz0φ
0 + λ0

zMz1φ
0 − Lz1φ0 (28b)

ε2 : Lz0φ
2 − λ0

zMz0φ
2 = λ2

zMz0φ
0 + λ1

zMz1φ
0 + λ1

zMz0φ
1 + λ0

zMz2φ
0

+ λ0
zMz1φ

1 − Lz2φ0 − Lz1φ1 (28c)

ε3 : Lz0φ
3 − λ0

zMz0φ
3 = λ3

zMz0φ
0 + λ2

zMz1φ
0 + λ2

zMz0φ
1 + λ1

zMz2φ
0

+ λ1
zMz1φ

1 + λ1
zMz0φ

2 + λ0
zMz3φ

0 + λ0
zMz2φ

1 + λ0
zMz1φ

2 − Lz3φ0

− Lz2φ1 − Lz1φ2 (28d)

where φk represents φk(ζi). For the Euler-Bernoulli beam the symbols Lz0 , Mz0 , Mz1 , Lz1

and λiz represent the following:

Lz0 =
d4

dζ4
1

Mz0 = 1 Lz1 =
d2

dζ2
1

3γz(ζ1)
d2

dζ2
1

Mz1 = γz(ζ1) λiz =
mλiL4

EI3
(29)
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and for Timoshenko beam theory their values are

Lz0 =

 − d2

dζ21

d
dζ1

− d
dζ1

−σ2e d
2

dζ21
+ 1

 Mz0 =

 σ2e 0

0 σ4e


Lz1 =

 −dγz(ζ1)d
dζ21

dγz(ζ1)
dx

−γz(ζ1)d
dζ1

3γz(ζ1)− dσ2eγz(ζ1)d
dζ21

 Mz1 =

 σ2eγz(ζ1) 0

0 3σ4eγz(ζ1)


e =

E

κG
σ2 =

I

AL2
λiz =

ω2ρL2

κG
(30)

The nth term, where n ≥ 1 is compactly written as

εn : Lz0φ
n − λ0

zMz0φ
n = λnzMz0φ

0 +

min(n||q)∑
j=1

λ0
zMzjφ

n−j +

n−1∑
i=1

min(n−i||q)∑
j=0

λizMzjφ
n−i−j

−
min(n||r)∑
j=1

Lzjφ
n−j (31)

To use orthogonality to solve the equation as would be evident in the solution procedure

given below, Mz0 terms should be written separately. The above equation is rewritten as

εn : Lz0φ
n − λ0

zMz0φ
n = λnzMz0φ

0 +

min(n||q)∑
j=1

(λ0
zMzj )φ

n−j +
n−1∑
i=1

λizMz0φ
n−i

+

n−1∑
i=1

min(n−i||q)∑
j=1

λizMzjφ
n−i−j −

min(n||r)∑
j=1

Lzjφ
n−j (32)

The characteristics of the above development which will be used in the solution procedure

given below are

1. Through the process of perturbation and by using the damage model, the homoge-

neous differential equation with variable coefficients is changed to a series of non-

homogeneous differential equations with constant coefficients.

2. The first differential equation of this series is the same as that representing the eigen-

value problem for the undamaged case.

3. The remaining equations in the series of differential equations have the same homo-

geneous parts as those of the first equation and the undamaged case.
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4. The unknowns for the nth order equation are the eigenfunction φn in the left hand

side of the equation and the eigenvalue λnz in the right hand side of the equation.

5. The layout of the nth order equation is given in a form so that the unknowns are given

separately in individual terms. The second term in the right hand side involving

λ0
z needs to be written separately to be able to write the unknown terms involving

λ0
z in the left hand side. The third term in right hand side involving Mz0 is written

separately to be able to use the orthogonality condition to simplify the final expression.

4.1.5 Zeroth-order solution

Equation (84a) is same as the eigenvalue problem for the undamaged elastic element, so

the solution would be the same. Let the solution be given by Sud(ζi). For example, for an

Euler-Bernoulli beam the solution is given by

Sud(ζ1) = A cos aζ1 +B sin aζ1 + C sinh aζ1 +D cosh aζ1 (33)

After applying the boundary conditions, the eigenvalue problem gives the mode shapes

for the beam. Hence the solution to the zeroth-order equation is same as that for the

undamaged beam given by

λ0
z = λ0

zk
φ0(ζi) = φ0

k(ζi), k = 1, 2, 3, . . . ,∞ (34)

4.1.6 nth-order solution

Next, the equations of order higher than zero are solved. Since the solution of zeroth-order

gave infinite number of modes so all the equations higher than zeroth-order will have one

equation for each mode. The equation for the nth order kth mode is given by

εn : Lz0φ
n
k − λ0

zk
Mz0φ

n
k = λnzkMz0φ

0
k +

min(n||q)∑
j=1

λ0
zk
Mzjφ

n−j
k +

n−1∑
i=1

λizkMz0φ
n−i
k

+

n−1∑
i=1

min(n−i||q)∑
j=1

λizkMzjφ
n−i−j
k −

min(n||r)∑
j=1

Lzjφ
n−j
k (35)

where k is the mode number considered. The unknowns in the above equation are φnk and

λnzk . The total solution for the above equation consists of an homogeneous part and a
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particular integral part (φnk = φnk |homogeneous +φnk |particular). Again the above equation,

which is a representative equation of higher order equations, has the same left-hand side

as (84a), so the homogeneous part of the solution would be the same, i.e. Sud(ζi). To

solve the particular integral part, the particular solution is represented as a summation of

the undamaged orthogonal modes or the zeroth-order solution modes, using the expansion

theorem, viz.,

φnk |particular=
∞∑
p=1

ηnkpφ
0
p (36)

where ηnkp is a constant. Thus, the unknowns are now ηnkp, p = 1, 2, . . .∞ and λnzk , and its

solution for the first two orders is shown by [18]. The solution for the first-order equation

is given by φ1
k = φ0

k +
∑∞

p=1p 6=k η
1
kpφ

0
p and solution for second-order equation is given by

φ2
k = φ0

k+
∑∞

p=1p 6=k η
2
kpφ

0
p. Using deductive reasoning, the solution for the rth-order equation

with r < n is φrk = φ0
k +

∑∞
p=1p6=k η

r
kpφ

0
p. It should be noted that η0

kp = 0. Orthogonality

of the undamaged modes is used to find the values of the unknowns. Equation (35) is

premultiplied by (φ0
m)T and integrated from ζi = 0 to ζi = 1 to yield

εn :

∫ 1

0
(φ0
m)TLz0

∞∑
p=1

ηnkpφ
0
pdζi − λ0

zk

∫ 1

0
(φ0
m)TMz0

∞∑
p=1

ηnkpφ
0
pdζi =

λnzk

∫ 1

0
(φ0
m)TMz0φ

0
kdζi+

min(n||q)∑
j=1

∫ 1

0
(φ0
m)Tλ0

zk
Mzj (φ

0
k +

∞∑
p=1p 6=k

ηn−jkp φ0
p)dζi+

n−1∑
i=1

λizk

∫ 1

0
(φ0
m)TMz0(φ0

k +

∞∑
p=1p6=k

ηn−ikp φ0
p)dζi+

n−1∑
i=1

min(n−i||q)∑
j=1

λizk

∫ 1

0
(φ0
m)TMzj (φ

0
k +

∞∑
p=1p 6=k

ηn−i−jkp φ0
p)dζi−

min(n||r)∑
j=1

∫ 1

0
(φ0
m)TLzj (φ

0
k +

∞∑
p=1p 6=k

ηn−jkp φ0
p)dζi (37)

Using orthogonality the following simplifications can be made:∫ 1

0
(φ0
m)TMz0φ

0
ndζi = δmnCm = δmnCn∫ 1

0
(φ0
m)TLz0φ

0
ndζi = δmnλmCm = δmnλnCn (38)
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where δmn is the Kronecker delta. Notice the orthogonality condition does not hold for Mzj

and Lzj where j ≥ 1. For those cases the following notations would be used to represent

the equations compactly ∫ 1

0
(φ0
m)TLzjφ

0
ndζi = αjmn∫ 1

0
(φ0
m)TMzjφ

0
ndζi = βjmn (39)

It can be shown at least for γ(ζi) = ∆lzδ(ζi − ζdi) βjmn = βjnm and αjmn = αjnm . Using

the orthogonality condition of equation (38) and the compact notation of equation (130),

equation (37) is now given by

εn :ηnkm
(
λ0
zm − λ

0
zk

)
Cm = λnzkδmkCk+

min(n||q)∑
j=1

λ0
zk

βjmk
+

∞∑
p=1p6=k

ηn−jkp βjmp

+
n−1∑
i=1

λizk

δmkCk +
∞∑

p=1p6=k
ηn−ikp δmpCp


+

n−1∑
i=1

min(n−i||q)∑
j=1

λizk

βjmk
+

∞∑
p=1p 6=k

ηn−i−jkp βjmp

− min(n||r)∑
j=1

αjmk
+

∞∑
p=1p6=k

ηn−jkp αjmp


(40)

The unknowns of this equation can be found by using the conditions m = k and m 6= k.

For m = k, the left-hand side vanishes and the following expression is obtained for the λnk :

λnzk =
1

Ck

[
min(n||r)∑
j=1

αjkk +

∞∑
p=1p 6=k

ηn−jkp αjkp


−
n−1∑
i=1

λizkCk −
n−1∑
i=1

min(n−i||q)∑
j=1

λizk

βjkk − ∞∑
p=1p 6=k

ηn−i−jkp βjkp


−

min(n||q)∑
j=1

λ0
zk

βjkk +
∞∑

p=1p 6=k
ηn−jkp βjkp

] (41)

36



www.manaraa.com

and for m 6= k the following expression is obtained for ηnkm

ηnkm =
1

(λ0
zm − λ0

zk
)Cm

{
min(n||q)∑
j=1

λ0
zk
βjmk

+
∞∑

p=1p 6=k
ηn−jkp (λ0

zk
βjmp)

−
min(n||r)∑
j=1

αjmk
+

∞∑
p=1p6=k

ηn−jkp (αjmp)


+

n−1∑
i=1

λizk(ηn−ikm Cm) +

n−1∑
i=1

min(n−i||q)∑
j=1

λizk

βjmk
+

∞∑
p=1p 6=k

ηn−i−jkp βjmp

} (42)

To complete the solution for mode shapes, the solution obtained till now is given by

φnk = Sud(ζi) +
∞∑

p=1,p 6=k
ηnkpφ

0
p + ηnkkφ

0
k (43)

Notice ηnkk is incorrectly deduced to be zero by [61]. Instead, this constant at this stage is

still undetermined. There are as many unknowns in Sud(ζi) as there are boundary conditions

as shown in the example expression given for the Euler-Bernoulli beam equation (33). The

ηnkk just combines with those constants. The final solution after applying the boundary

conditions is given by

φnk = φ0
k +

∞∑
p=1,p 6=k

ηnkpφ
0
p (44)

The solution has the mode shapes of the undamaged beam as one of the parts because

of the unique choice of the particular solution. The particular solution independently al-

ready satisfied the boundary conditions. The final solution for the mode shape and natural

frequencies of the damaged structure is determined by using equation (26).

4.1.7 Solution to arbitrary damage profile

To determine the mode shapes and natural frequencies for an arbitrary damage profile, first

the modes shapes and natural frequencies are determined using a sharp damage modeled

using a delta function γz(ζi) = δ(ζi − ζdi). Let the eigenfunction (mode shape) and the

eigenvalue (which can be used to determine the natural frequency) be determined using

such a damage profile be φδk(ζi) and λδk , respectively. A convolution integral in space

domain is used to determine mode shapes and natural frequencies for any arbitrary damage
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profile. The final expressions is given by

φk(ζi) =

∫
Ω
φδk(ζi − ζdi)γ(ζdi)dζdi

λk =

∫
Ω
λδkγ(ζdi)dζdi (45)

where ζd is the spatial location of the damage. For multiple damage locations, a damage

profile function for multiple areas of damage given by equation (19) is used.

φk(ζi) =

p∑
j=1

∫
Ωj

φδk(ζi − ζdi)γ(ζdi)dζdi

λk =

p∑
j=1

∫
Ωj

λδkγ(ζdi)dζdi (46)

The subscript j denotes the damage number iterator and number, p denotes the total

number of independent damage locations. Although, the natural frequency does not depend

on the spatial variable ζi, it still can be determined in the same way.

To verify the correctness of the expression, the first-order correction is compared against

the ones derived for Euler-Bernoulli beams [17] and for Timoshenko beams [15]. They were

found to be the same.

λ1
zn =

α1nn − λ0
znβ1nn

Cn
η1
nj =

λ0
zk
β1nj − α1nj

(λ0
zj − λ0

zn)Cj
(47)

The second-order correction quantities are obtained as solution to (28c)

λ2
zn =

α1nn − λ1
znβ1nn − λ0

znβ1nn

Cn
(48)

η2
nj =

λ1
znβ1nj + λ1

znη
1
njCjλ

0
znβ1nj + λ0

zn

∑∞
l=1,l 6=n η

1
njβ1nj − α1nj −

∑∞
l=1,l 6=n η

1
njα1nj

Cj(λ0
zj − λ0

zn)
(49)

4.2 Conclusions

• A general solution to damaged elastic structures is provided. The damage can have

any profile, and the elastic structure can have multiple areas of damage. The elastic

element can be supported on any set of boundary conditions which yield orthogonal

modes.
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• The model needs the theoretical undamaged modes. The primary advantage of the

model lies in its apparent computational advantage over finite element models. The

number of elements required to model a damaged element is very high and is limited

by the size of damage, at least in the vicinity of the damage. So, in a beam of length

1 m and cross sectional dimensions 0.02 m × 0.005 m, if there is a through-thickness

damage of depth 0.0005 m, the elements required to model this damaged beam would

be two-dimensional plane stress elements with the smallest elements being of the order

of 0.0005 m. This increases the computational requirement from using a few beam

elements for undamaged state to several plane stress elements for the damaged state.

Using the method suggested herein, however, the modes of the undamaged beam

can be used to model the damaged beam, which will be computationally much less

expensive.

• The inertia effects due to the damage, which has been neglected by all the prior

researchers, is included in the present model. The number of terms stemming due to

the inertia effects due to the damage is larger than the number of terms arising due

to loss of stiffness due to the damage. Therefore, it can be concluded that the inertia

effect is an important parameter for modeling damage.

• The method yields a series solution which converges to the correct value.

• Since the theory is general, it is not possible to verify it fully in one thesis, but

different aspects of the theory have been verified earlier and will be tested in future

publications. The first-order perturbation correction in Euler-Bernoulli beams has

been verified in the work by Dixit and Hanagud [18]. The first-order correction, for

Timoshenko beams the method was verified in [15].

• The framework presented in this chapter presents a mathematical model for the dam-

age. Such mathematical models allow understanding of the physics behind the prob-

lem, which helps in the explanation of experimental readings. They also allow predic-

tion of response of the structure. These studies are also useful for the development

of new experimental techniques to address another important aspect of SHM, that of
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damage diagnosis. A method based on this framework for damage diagnosis (identifi-

cation and localization) in Euler-Bernoulli beams, has been proposed in [16]. Similar

methods based on the framework may be developed for damage diagnosis.
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Chapter V

COMMENTS ON THE SOLUTION PRESENTED BY LESTARI [38]

This chapter is reproduction of published work by Dixit and Hanagud [17]. The primary

motivation for the chapter sprouts from the article [?]. The paper although very useful

and informative, as it conducts a wide array of experiments on different types of damages

for a beam, has some discrepancies in the solution to the perturbed ordinary differential

equation. A possible solution to the equations is presented. The inconsistency should not

affect the results presented in the paper enormously since it manifests itself as a higher

order effect. In this chapter the process is extended and the change in mass is taken into

account along with change of stiffness. Only stiffness change is modeled in the original work

[?].

5.1 Discrepancy In The Paper

In the appendix of [?] the first order perturbation equation is given as

EI0
d4φ1

i

dx4
− λ0m0φ

1
i = λ1m0φ

0
i − EI0

d2

dx2
(γ(x, xd)

d2φ0
i

dx2
) (50)

where the difference of step functions H(x−x1)−H(x−x2) is given by γ(x, xd). The final

solution is given as

φ1
i (x) =

n∑
k=1

βikφ
0
i (x)+ < x− x1 >

d

dx
φ0
i (x1)− < x− x2 >

d

dx
φ0
i (x2)+

H(x− x1)φ0
i (x1)−H(x− x2)φ0

i (x2)− [H(x− x1)−H(x− x2)]φ0
i (x) (51)

In the first term the subscript of φ0 as i is most probably a typo, since, in that case

when this quantity is multiplied by φ0
j , and integrated from 0 to L, as outlined in the

solution procedure, the result would be zero because of orthogonality of modes. This typo

is corrected in the last equation (equation A12) of the appendix where the subscript of φ0

in the first term of the first order correction is changed to j. Assuming that is indeed the
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case the correct expression is

φ1
i (x) =

n∑
k=1

βikφ
0
k(x)+ < x− x1 >

d

dx
φ0
i (x1)− < x− x2 >

d

dx
φ0
i (x2)+

H(x− x1)φ0
i (x1)−H(x− x2)φ0

i (x2)− [H(x− x1)−H(x− x2)]φ0
i (x) (52)

For the case x > x2 the solution becomes

φ1
i (x) =

n∑
k=1

βikφ
0
k(x) + x(

d

dx
φ0
i (x1)− d

dx
φ0
i (x2)) + φ0

i (x1)− φ0
i (x2) (53)

Consider a simply supported boundary condition for a beam of length L. It is known that

φ0
i (L) = 0 for all i. Applying that to the above equation

φ1
i (L) = L(

d

dx
φ0
i (x1)− d

dx
φ0
i (x2)) + φ0

i (x1)− φ0
i (x2) (54)

The above quantity is not zero (except for x1 = x2 which means there is no damage). Hence

the solution violates the boundary condition for simply supported case. It can be similarly

shown that the solution violates the boundary condition for other end conditions too.

For the case x < x1 the solution becomes

φ1
i (x) =

n∑
k=1

βikφ
0
k(x) (55)

Again consider a simply supported boundary condition with a damage at the center. It

is known that for symmetric problem like simply supported boundary condition φ0
i (x) =

φ0
i (L− x). The problem is symmetric about the midpoint, therefore the solution should be

symmetric about the midpoint hence φ1
i (x) = φ1

i (L− x), putting this in (53) and (55) the

following equality is obtained

(L− x)(
d

dx
φ0
i (x1)− d

dx
φ0
i (x2)) + φ0

i (x1)− φ0
i (x2) = 0 (56)

The eigen functions for simply supported case are given by φ0
i (x) = sin( iπxL ). Substituting

in the above equation

(L− x)
iπ

L
(cos(

iπx2

L
)− cos(

iπx1

L
)) + sin(

iπx1

L
)− sin(

iπx2

L
) = 0 (57)

The above identity will hold only for x1 = x2 which means there is not damage. The

solution can similarly be shown to be incorrect for other boundary conditions too by using

similar arguments.
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5.2 An Alternative Solution

The homogeneous part of the equation (50) is same as that obtained when solving vibration

problems for Euler-Bernoulli beams after separation of variables. The solution is given by

φ1 = A sin(ax) +B cos ax+ C cosh ax+D sinh ax (58)

where a4 = m0λ0

EI0
. In the paper [?] it is claimed that the homogenous solution is

φ1
i |homogeneous=

∞∑
k=1

ηikφ
0
i (59)

In the corrected version the above is assumed as a particular solution. Similar procedure

was used to obtain the particular solution for simply supported boundary condition in [37].

The particular solution is given by

φ1
n |particular=

∞∑
k=1

ηnkφ
0
k (60)

In the above the subscript i is changed by n. Advantage of choosing the particular solution

as above is that the homogeneous solution is now simply φ1
n |homogeneous= φ0

n. The particular

solution is substituted in (50) to give

EI0

∞∑
k=1

ηnk(φ
0
k)
′′′′ − λ0

nm0

∞∑
k=1

ηnkφ
0
k = λ1

nm0φ
0
n − EI0

d2

dx2
[γ(x, xd)(φ

0
n)′′] (61)

Multiplying equation (61) by φ0
j (x), integrating from x = 0 to x = L, one gets

∞∑
k=1

(ηnkEI0

∫ L

0
(φ0
k)
′′′′φ0

jdx− λ0
nm0ηnk

∫ L

0
φ0
kφ

0
jdx) = λ1

nm0

∫ L

0
φ0
nφ

0
jdx

−EI0

∫ L

0

d2

dx2
[γ(x, xd)(φ

0
n)′′]φ0

jdx (62)

The evaluation of the integrals on the right hand side of (62) are as follows.

m0

∫ L

0
φ0
nφ

0
jdx = δnjQnj (63a)∫ L

0

d2

dx2
[γ(x, xd)(φ

0
n)′′]φ0

jdx =
d

dx
[γ(x, xd)(φ

0
n)′′]φ0

j |L0 −[γ(x, xd)(φ
0
n)′′](φ0

j )
′ |L0

+

∫ L

0
[γ(x, xd)(φ

0
n)′′](φ0

j )
′′dx =

∫ L

0
(H(x− x1)−H(x− x2))(φ0

n(x))′′(φ0
j (x))′′dx

=

∫ x2

x1

(φ0
n(x))′′(φ0

j (x))′′dx = DF 1
s (63b)
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DF 1
s denotes the damage factor due to stiffness change. The superscript 1 denotes the order

of correction to which the damage factor corresponds. Notice the first two boundary terms

in (63b) are zero, since, γ(x, xd) = 0 at both x = L, and x = 0. The first integral on the

left hand side of (62).

∞∑
k=1

ηnkEI0

∫ L

0
(φ0
k)
′′′′φ0

jdx =

∞∑
k=1

ηnkEI0((φ0
k)
′′′φ0

j |L0 −(φ0
k)
′′(φ0

j )
′ |L0 +

∫ L

0
(φ0
k)
′′(φ0

j )
′′dx)) =

∞∑
k=1

ηnkEI0

∫ L

0
(φ0
k)
′′(φ0

j )
′′dx (64)

The boundary terms go to zero since the eigenfunctions should satisfy the boundary condi-

tions. Using orthogonality condition of modes the above equation is written as

∞∑
k=1

ηnkEI0

∫ L

0
(φ0
k)
′′(φ0

j )
′′dx = EI0ηnj

∫ L

0
((φ0

j )
′′)2dx = λ0

jm0ηnj

∫ L

0
(φ0
j )

2dx (65)

Similarly the second term of left hand side of (62) is simplified using orthogonality of modes.

The left hand side of (62) is transformed as

ηnjm0

∫ L

0
((φ0

j )
′′)2dx(λ0

j − λ0
n) (66)

The expression m0

∫ L
0 (φ0

j )
2dx in the above equation is denoted by m0j . Equation (62) is

written as

ηnjm0jλ
0
j − λ0

nm0jηnj = λ1
nm0δnjQnj − EI0

∫ x2

x1

(φ0
n(x))′′(φ0

j (x))′′dx (67)

For j = n the right hand side becomes zero

λ1
n =

λ0
n∫ L

0 (φ0
n)2dx

∫ x2
x1

((φ0
n(x))′′)2dx

a4
(68)

For n 6= j

ηnj =
−1

(
λ0j
λ0n
− 1)

∫ x2
x1

((φ0
n(x))′′(φ0

j (x))′′)dx

a4
∫ L

0 (φ0
j )

2dx
(69)

φ1
n = φ0

n +

∞∑
j=1,j 6=n

ηnjφ
0
j (70)

The final mode shapes and natural frequencies for damaged beam as per the calculations

can be found to be

φ(x) = φ(x)0 − εφ(x)1 λ = λ0 − ελ1 (71)
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5.3 Solution, Including The Decrease In Mass Effect

At the damage location not only the stiffness of the beam decreases but its mass per unit

length is also reduced. Considering only the drop in stiffness will not give the complete

picture of the physics of the problem. This drop in mass distribution has not considered in

literature. In this section this effect is also considered along with the drop in stiffness to

arrive at the expression for mode shapes and natural frequencies.

The drop in mass equation would be similar to drop in stiffness equation (4) in the

appendix [?] and is given by

EI(x) ≈ EI0(1− ε∆lδ(x− xd))

m(x) = m0(1− 1

3
ε∆lδ(x− xd)) where ε =

3hd
h

(72)

The changed perturbed equation corresponding to the first order perturbation that replaces

equation (50) is

ε1 : EI0
d4φ1

dx4
− λ0m0φ

1 = λ1m0φ
0 +

1

3
λ0m0φ

0γ(x, xd)− EI0
d2

dx2
[γ(x, xd)

d2φ0

dx2
]

(73)

Due to the change in mass distribution equation (61) will have an additional term. The

changed equation is given by

EI0

∞∑
k=1

ηnk(φ
0
k)
′′′′ − λ0

nm0

∞∑
k=1

ηnkφ
0
k = λ1

nm0φ
0
n +

1

3
λ0
nm0γ(x, xd)φ

0
n−

EI0
d2

dx2
[γ(x, xd)(φ

0
n)′′] (74)

Following the same procedure as outlined in the previous section a factor similar to damage

factor for stiffness DF 1
s , a damage factor for mass DF 1

m is obtained. It is given by∫ L

0
γ(x, xd)φ

0
nφ

0
jdx =

∫ x2

x1

φ0
nφ

0
jdx = DF 1

m

(75)

Finally the altered form of (69) and (70) is given by

λ1
n =

λ0
n∫ L

0 (φ0
n)2dx

(
DF 1

s

a4
− 1

3
DF 1

m) (76)
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ηnj =
1

λ0j
λ0n
− 1

1
3DF

1
m − 1

a4
DF 1

s∫ L
0 (φ0

j )
2dx

(77)

φ1
n = φ0

n +
∞∑

j=1,j 6=n
ηnjφ

0
j (78)

5.4 Conclusions

• The errors in the solution of perturbed differential of a damaged Euler-Bernoulli beam

[?] is corrected in this chapter.

• The chapter then introduces the change in mass distribution due to damage in the

perturbed differential equations. The solution for the changed perturbed differential

equations is presented.
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Chapter VI

SINGLE BEAM ANALYSIS OF DAMAGED BEAMS VERIFIED

USING A STRAIN ENERGY BASED DAMAGE MEASURE

This chapter is to a large part a reproduction of a published work done by the author [18].

An analytical expression for a new damage measure that relates the strain energy to the

damage location and magnitude is presented in this chapter. The strain energy expression is

calculated using modes and natural frequencies of damaged beams that are derived based on

single beam analysis considering both decrease in mass and stiffness. Decrease in mass and

stiffness are a fallout of geometric discontinuity, and no assumptions regarding the physical

behavior of damage are made. The method is applicable to beams with notch-like non-

propagating cracks and arbitrary boundary conditions. The analytical expressions derived

for mode shapes, curvature shapes, natural frequencies and an improved strain energy based

damage measure, are verified using experiments. The improvement in the damage measure

stems from not assuming that the bending stiffness of the damaged beam is constant and

equal to that of undamaged beam when calculating the strain energy of the entire beam. It

is also not assumed that the bending stiffness of the element in which the damage is located

is constant.

6.1 Natural Frequencies and Modes of a Damaged Beam

In deriving the modes and natural frequencies of a damaged beam the following assumptions

are made.

1. The damage is not located at the supports

2. Euler-Bernoulli beam theory is valid

3. The interaction effect, which is a highly non-linear phenomenon that happens when

crack tips touch each other during vibrations is negligible.
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The natural modes of vibration of Euler-Bernoulli beam are given by the equation

d2

dx2
[E(x)I(x)

d2

dx2
φ(x)]−m(x)λφ(x) = 0 (79)

where E(x) and I(x) are the Young’s modulus and and area moment of inertia at a section

x of the beam, m(x) is the mass per unit length at the same section, and λ is an unknown

constant eigenvalue.

Consider a uniform rectangular cross section of width b and depth h as shown in figure 1

given in the previous chapter. A damage is located at x = xd with length of ∆l and depth

of hd. Therefore at the damage location the depth of the beam is reduced to h − hd.

For a notch-like damage, the profile can be approximated by using Heaviside functions

H(x−xd)−H(x−xd−∆l). Then, the sectional bending stiffness EI(x) and sectional mass

m(x) are given as

EI(x) =
Ebh(x)3

12
=
Eb [h− hd(x)]3

12
=

Ebh3

12

{
1− hd

h
[H(x− xd)−H(x− xd −∆l)]

}3

m(x) = m0

{
1− hd

h
[H(x− xd)−H(x− xd −∆l)]

}
(80)

when ∆l is small, then H(x− xd)−H(x− xd −∆l) ≈ ∆lδ(x− xd) for a sharp crack [36],

where δ(x) is the Dirac delta function. Binomial expansion of these equations, retaining

terms only through order one in ∆l, one obtains the following expressions:

EI(x) ≈ EI0 [1− ε∆lδ(x− xd)] (81a)

m(x) ≈ m0

[
1− 1

3
ε∆lδ(x− xd)

]
(81b)

ε =
3hd
h

(81c)

In the above equation I0 and m0 are nominal quantities at an undamaged location. As the

quantity ε is small, the function φ(x) and λ are expanded using perturbation theory [48] as

the following series

φ(x) = φ(x)0 − εφ1(x)− ε2φ2(x)− . . .

λ = λ0 − ελ1 − ε2λ2 − . . . (82)
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The superscripts of φ and λ denote the order of perturbation. Equations (81a), (81b) and

(82) are substituted in (79) to give

d2

dx2

{
EI0 [1− ε∆lδ(x− xd)]

d2

dx2

[
φ0(x)− εφ1(x)− ε2φ2(x)

]}
−

m0

[
1− 1

3
ε∆lδ(x− xd)

]
(λ0 − ελ1 − ε2λ2)

[
φ0(x)− εφ1(x)− ε2φ2(x)

]
= 0 (83)

The equations of order 0, 1 and 2 in ε are obtained as

ε0 : EI0
d4φ0

dx4
− λ0m0φ

0 = 0 (84a)

ε1 : EI0
d4φ1

dx4
− λ0m0φ

1 = λ1m0φ
0 +

1

3
λ0m0φ

0∆lδ(x− xd)−

EI0∆l
d2

dx2

[
δ(x− xd)

d2φ0

dx2

]
(84b)

ε2 : EI0
d4φ2

dx4
− λ0m0φ

2 = λ2m0φ
0 − λ1m0φ

1 − 1

3
λ0m0φ

1∆lδ(x− xd)−

1

3
λ1m0φ

0∆lδ(x− xd) + EI0∆l
d2

dx2

[
δ(x− xd)

d2φ1

dx2

]
(84c)

A quantity a is defined such that a4 = m0λ0

EI0
. In general, the beam is supported with

different boundary conditions. However, equation (84a) is the same as the equation for

natural vibrations of the undamaged beam. Let the solution to the equation (84a) be given

by

λ0 = λ0
n n = 1, 2, 3 . . . ,∞

φ0(x) = φ0
n(x), n = 1, 2, 3, . . . ,∞ (85)

Using the condition of orthogonality, the following two equations are obtained∫ L

0
EI(φ0

m)′′(φ0
n)′′dx = λ0

∫ L

0
m0(φ0

m)(φ0
n)dx = δmnQmn (86)

where δmn is the Kronecker delta and Qmn is a constant. Next, equation (84b) is solved.

Equation (84b) is different from (84a) as it has a RHS. Hence, the total solution consists of

an homogeneous part and a particular integral part (φ1
n = φ1

n |homogeneous +φ1
n |particular).

The only unknown in the RHS of (84b) is λ1
n. The homogeneous part of the equation yields

φ1
n |homogeneous= φ0

n since the homogeneous parts of equations (84a) and (84b) are the same.

The particular solution, φ1
n |particular, is expanded in terms of the orthogonal modes φ0

k

φ1
n |particular=

∞∑
k=1

ηnkφ
0
k (87)
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From equations (84b), (87) and (85) one obtains the following:

EI0

∞∑
k=1

ηnk(φ
0
k)
′′′′ − λ0

nm0

∞∑
k=1

ηnkφ
0
k = λ1

nm0φ
0
n +

1

3
λ0
nm0∆lδ(x− xd)φ0

n−

EI0∆l
d2

dx2
[δ(x− xd)(φ0

n)′′] (88)

where there is one equation for each mode of vibration for the beam. Multiplying equation

(88) by φ0
j (x), integrating from x = 0 to x = L, one obtains

∞∑
k=1

ηnk(EI0

∫ L

0
(φ0
k)
′′′′φ0

jdx− λ0
nm0

∫ L

0
φ0
kφ

0
jdx) = λ1

nm0

∫ L

0
φ0
nφ

0
jdx+

1

3
λ0
nm0∆l

∫ L

0
δ(x− xd)φ0

nφ
0
jdx− EI0∆l

∫ L

0

d2

dx2
[δ(x− xd)(φ0

n)′′]φ0
jdx (89)

The integrals in equation (89) are evaluated as follows.

m0

∫ L

0
φ0
nφ

0
jdx = δnjQnj (90a)∫ L

0
δ(x− xd)φ0

nφ
0
jdx = φ0

n(xd)φ
0
j (xd) (90b)∫ L

0

d2

dx2
[δ(x− xd)(φ0

n)′′]φ0
jdx =

d

dx
[δ(x− xd)(φ0

n)′′]φ0
j |L0

−[δ(x− xd)(φ0
n)′′](φ0

j )
′ |L0 +

∫ L

0
[δ(x− xd)(φ0

n)′′](φ0
j )
′′dx = (φ0

n(xd))
′′(φ0

j (xd))
′′ (90c)

Notice the first two terms (90c) are zero because δ(x− xd) = 0 at both x = L, and x = 0.

The first integral on the left hand side of equation (89) is simplified as

∞∑
k=1

ηnkEI0

∫ L

0
(φ0
k)
′′′′φ0

jdx =
∞∑
k=1

{
ηnkEI0

[
(φ0
k)
′′′φ0

j |L0 −(φ0
k)
′′(φ0

j )
′ |L0 +

∫ L

0
(φ0
k)
′′(φ0

j )
′′dx

]}
(91)

The boundary terms go to zero since the eigenfunction satisfies all the boundary conditions.

Using equation (86) the above equation is written as

EI0ηnj

∫ L

0

[
(φ0
j )
′′]2 dx = λ0

jm0ηnj

∫ L

0
(φ0
j )

2dx (92)

Similarly, the second term on the left hand side of equation (89) can be simplified using

equation (86). The left hand side of equation (89) is transformed as

ηnjm0

∫ L

0
(φ0
j )

2dx(λ0
j − λ0

n) (93)
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The expression m0

∫ L
0 (φ0

j )
2dx in the above equation is denoted by m0j . Equation (89) can

now be written as

ηnjm0jλ
0
j − λ0

nm0jηnj = λ1
nm0δnjQnj +

1

3
λ0
nm0∆lφ0

n(xd)φ
0
j (xd)−

EI0∆l
[
φ0
n(xd)

]′′ [
φ0
j (xd)

]′′
(94)

For j = n, the left hand side becomes zero and hence

λ1
n =

∆lλ0
n∫ L

0 (φ0
n)2dx

{[
φ0
n(xd)

′′]2
a4

− 1

3

[
φ0
n(xd)

]2}
(95)

For n 6= j

ηnj =
∆l

λ0j
λ0n
− 1

1
3φ

0
n(xd)φ

0
j (xd)− 1

a4

[
φ0
n(xd)

]′′ [
φ0
j (xd)

]′′
∫ L

0 (φ0
j )

2dx
(96)

φ1
n = φ0

n +
∞∑

j=1,j 6=n
ηnjφ

0
j (97)

The second order correction is required for calculation of strain energy. The same procedure

is used to solve equation (84c). The second order correction quantities are obtained as

λ2
n =

∆lλ0
n∫ L

0 (φ0
n)2dx

{[
φ0
n(xd)

′′]2
a4

− 1

3
φ0
n(xd)φ

1
n(xd)−

λ1
n

3λ0
n

φ1
n(xd)φ

0
n(xd)

}
(98)

βnl =
∆l

λ0l
λ0n
− 1

1
a4

[
φ0
n(xd)

]′′ [
φ0
j (xd)

]′′
− 1

3φ
1
n(xd)φ

0
l (xd)−

λ1n
3λ0n

φ0
n(xd)φ

1
l (xd)∫ L

0 (φ0
l )

2dx
(99)

φ2
n = φ0

n +
∞∑

l=1,l 6=n
βnlφ

0
l (100)

Finally, the natural frequency and mode shape correct to the second order for a damaged

beam are given by

φn = φ0
n − ε[φ0

n +

∞∑
j=1,j 6=n

ηnjφ
0
j ]− ε2[φ0

n +

∞∑
l=1,l 6=n

βnlφ
0
l ] (101a)

λn = λ0
n − ελ1

n − ε2λ2
n (101b)

Plots of mode shapes and curvature for damaged and undamaged beams correct to first

order are given in figures 3 and 4. A detailed discussion about the figures is given in the

results section.
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Figure 3: Damaged (dashed lines) and undamaged (continuous lines) mode shapes; xd =
0.35L, ∆l = 0.01L, ε = 0.1/3
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Figure 4: Damaged (dashed lines) and undamaged (continuous lines) curvature shapes;
xd = 0.35L, ∆l = 0.01L, ε = 0.1/3
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6.2 Strain Energy Based Damage Measure in Terms of Damage Pa-
rameters

The strain energy due to bending for the undamaged beam, excited in its nth mode, is given

as

Un =
1

2
a2
n

∫ L

0
EI(x)

[
(φn)′′

]2
dx (102)

The strain energy for the undamaged beam is given by Uud

Uud = Un =
1

2
a2
n

∫ L

0
EI0

[
(φn)′′

]2
dx (103)

Similarly the strain energy due to bending, of the damaged beam Ud can be calculated by

substituting (81a) and (101a) in (102). Therefore

Ud =
1

2
a2
n

∫ L

0
EI0 [1− ε∆lδ(x− xd)]

{[
φ0
n − ε

φ0
n +

∞∑
j=1,j 6=n

ηnjφ
0
j

−
ε2

φ0
n +

∞∑
l=1,l 6=n

βnlφ
0
l

]′′}2

dx (104)

Collecting terms up to the order of 2 in ε

Ud =
1

2
a2
n

∫ L

0
EI0 [1− ε∆lδ(x− xd)]

{[
(φ0
n)′′
]2 − 2ε(φ0

n)′′

(φ0
n)′′ +

∞∑
j=1,j 6=n

ηnj(φ
0
j )
′′


+ε2

(φ0
n)′′ +

∞∑
j=1,j 6=n

ηnj(φ
0
j )
′′

2

− 2ε2(φ0
n)′′

(φ0
n)′′ +

∞∑
l=1,l 6=n

βnl(φ
0
l )
′′

}dx
(105)

The above equation is further simplified by using the condition of orthogonality.

Ud =
1

2
a2
n

∫ L

0
EI0

〈[
(φ0
n)′′
]2 − 2ε

[
(φ0
n)′′
]2

+ ε2

[(φ0
n)′′
]2

+

∞∑
j=1,j 6=n

η2
nj

[
(φ0
j )
′′]2−

2ε2
[
(φ0
n)′′
]2〉

dx− 1

2
a2
nε∆lEI0

〈[
(φ0
n(xd))

′′]2 − 2ε
[
φ0
n(xd)

′′]2 + ε2

{[
(φ0
n(xd))

′′]2 +

∞∑
j=1,j 6=n

η2
nj

[
(φ0
j (xd)

′′)
]2}〉

(106)

A way to calculate the damage measure based on strain energy is given in [13]. It is

calculated as the change in flexural rigidity of a sub-region of the beam. For this, the beam
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is divided into several sub-divisions. The damage measure for the kth segment is given by

DMk

DMk =
(EI)k
(EI)∗k

=


∫ ak+1

ak

(
∂2φ∗i
∂x2

)2
dx∫ L

0

(
∂2φ∗i
∂x2

)2
dx

 /

∫ ak+1

ak

(
∂2φi
∂x2

)2
dx∫ L

0

(
∂2φi
∂x2

)2
dx

 (107)

where the starred quantities denote the quantities with damage, and ak denotes the starting

coordinate of the kth division. An advantage of the above representation is that the modes

need not be normalized, and the constant associated with displacement is canceled. How-

ever, an important assumption made in the above derivation is that the flexural rigidity of

the whole beam is same for the damaged beam as for the undamaged beam, and that the

flexural rigidity of the damaged beam element is reduced to a constant. In other words,

the damage is assumed to extend over the whole damaged segment. Mathematically this

translates in taking out the non-constant EI(x) term out of the integral in equation (102)

for both the segment strain energy and strain energy for the whole beam. Obviously this

cannot be mathematically justified. Hence, here it is proposed that the flexural rigidity term

be retained inside the integral. This is possible because we have been able to analytically

obtain the expressions of mode shapes of a damaged beam as shown above. Substituting

flexural rigidity from equation (81a) and formula for damaged mode shape from equation

(101a), one obtains

Ud = EI0

〈
(1− 2ε− ε2)

∫ L

0

[
(φ0
n)′′
]2
dx+ ε2


∫ L

0

∞∑
j=1,j 6=n

η2
nj

[
(φ0
j )
′′]2 dx

−
ε∆l

{[
φ0
n(xd)

]′′}2
− 2ε

[
φ0
n(xd)

′′]2〉

(108)

The damage measure DM is then be calculated by [13]

DM =
Udi
Ud

/
Uudi
Uud

(109)

The subscript i denotes the strain energy for the ith segment (xi to xi+1), Udi and Uudi are
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given by

Udi = EI0(1− 2ε− ε2)

〈∫ xi+1

xi

[
(φn)′′

]2
+

∞∑
j=1,j 6=n

ε2η2
nj

1− 2ε− ε2
[
(φ0
j )
′′]2−

δ(x− xd)∆lε(1− 2ε)

1− 2ε− ε2
{[
φ0
n(xd)

]′′}2
〉

Uudi =

∫ xi+1

xi

EI0

[
(φn)′′

]2
dx (110)

Attention is now drawn to equations (101a) and (108) which give the damaged mode

shape and strain energy. The expressions are reproduced below in a changed form, only

terms up to the order of ε are retained for mode shape.

Ud = EI0(1− 2ε− ε2)

〈∫ L

0

[
(φn)′′

]2
dx+

∫ L

0

∞∑
j=1,j 6=n

ε2η2
nj

1− 2ε− ε2
[
(φ0
j )
′′]2 dx−

∆lε(1− 2ε)

1− 2ε− ε2
{[
φ0
n(xd)

]′′}2
〉

φn = (1− 2ε− ε2)

φ0
n −

∞∑
j=1,j 6=n

ηnjε

1− 2ε− ε2
φ0
j

 (111)

Let the expression
∑∞

j=1,j 6=n
ηnjε√

1−2ε−ε2φ
0
j be denoted by Γ(x;xd,∆l, ε) or global damage sen-

sitivity function and ∆lε(1−2ε)
(1−2ε−ε2)

((φ0
n(xd))

′′)2 by Λ(xd,∆l, ε) or local damage sensitivity con-

stant. Notice xd,∆l, ε collectively represent the damage parameters. The above expressions

can now be simplified to

Ud = Uud + EI0

∫ L

0

{[
Γ(x, xd,∆l, ε)

′′]2 dx}− EI0Λ(xd,∆l, ε)

φn = φ0
n − Γ(x, xd,∆l, ε) (112)

It can be seen that the displacements exhibit global sensitivity to damage through the func-

tion Γ(x, xd,∆l, ε) only while strain energy has both global and an acute local sensitivity

to damage through the function Γ(x, xd,∆l, ε) and through the constant Λ(xd,∆l, ε) re-

spectively. Another important observation is that the strain energy is increased everywhere

except at damage location where it is reduced due to local damage sensitivity constant.
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 Figure 5: Damage measure, equation (109); xd = 0.35L, ∆l = 0.01L, ε = 0.1/3

6.3 Results and Verification

6.3.1 Analytical results

To show the generic nature of the theory presented, four types of beams (simply-supported

(SS), clamped-free (CF) clamped-clamped (CC) and propped-cantilever (PC)) are consid-

ered. First, in figure 3, the mode shape (dashed line) of the damaged beam is given. The

first mode is given for the SS, second for the CF, third for the CC and fourth for the PC

damaged beams. Damage parameters are taken to be xd = 0.35L,∆l = 0.01L, ε = 0.1/3.

The modes of the damaged beams are given along side those of the undamaged beams (con-

tinuous line). Similarly in figure 4 the curvature shapes for the damaged beams are given

along side those of the undamaged beam. The curvature plots are given in the same order

and for the same beams as those for mode shapes. It is seen that mode profiles of damaged

and undamaged beams are similar and the damage cannot be identified just by looking at

the mode profiles.

Next in figure 5 the damage measure derived is calculated for the beams. Again the

same trend is followed as previous figures as far as beams and their mode numbers are
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Figure 6: Damage measure modes (1-4); xd = 0.35L, ∆l = 0.01L, ε = 0.1/3
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Figure 7: Effect of ε on the damage measure; xd = 0.35L, ∆l = 0.01L
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Figure 8: Effect of ∆l on damage measure; xd = 0.35L, ε = 0.1/3

concerned. It is observed that the location of damage is clearly identified using the damage

measure. The noticeable features of the plot are that there is a uniform global effect of

damage all along the beams since the magnitude of the damage measure is greater than

one. However, at the damage location there is an acute localized drop. Hence, a damage

measure on strain energy gives a direct visual information regarding the location of damage.

It seems likely to be able to also give damage parameters due to the localized damage

effect because according to equation (112) the term Λ(xd,∆l, ε) is a function of damage

parameters. Once the damage location xd is ascertained using the damage measure plots,

the other damage parameters can be obtained from the local damage sensitivity function,

Λ(xd,∆l, ε). Similar discontinuities at the damage location were experimentally observed

by Cornwell [13]. Another interesting observation regarding the plots is that the drop at

the damage location is directly proportional to the increase at the locations without the

damage. It would be interesting to check the area under the plots for the damage measure

and to ascertain if they tend to be the same.

The next figure 6 gives the plot of damage measure versus the mode number for all

four types of beams. It is observed that, the sensitivity of damage measure to damage is

dependent on the mode number. Some modes are more sensitive to damage than others.

To normalize this erratic behavior, a cumulative damage measure has been used by some

researchers. A cumulative damage measure is an average of the damage measure over a
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Figure 9: Experimental setup

Table 1: Frequency results comparison analytical vs experimental (Hz)
Experimental Analytical

Mode Undamaged Damaged Undamaged Damaged % error =

Undamexpt Damexpt Undamanal Damanal
Damanal−Damexpt

Damanal

1 25.6 25 24.9 24.3 2.88
2 153 155 156 154.6 0.26
3 419 420 436.7 427.8 4.16
4 809 801 855.7 855.7 6.39
5 1314 1326 1414.6 1382.6 4.09

number of modes. The cumulative damage measure is used from this point on.

The cumulative damage measures for different ratios of damage depth to total depth of

the beam is given in next figure, figure 7. Finally, a cumulative damage measure is given

for different extent of the damage in figure 8. The results of last two figures 7 and 8 are on

expected lines since the magnitude of the damage has a direct bearing on damage measure.

The ∆l value is more sensitive to damage than the ε value. However, it should be kept in

mind that there is a inherent limit on the value of ε according to the theory: The theory

neutral axis is assumed to remain unaffected by the damage. Also there is a limit on the

value of ∆l since the notch-shaped defect given by Heaviside function was approximated by

a sharp crack given by a Dirac delta function.
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Figure 10: Frequency response function, average velocity (m/sV) against frequency (Hz)

Table 2: Frequency results comparison (Hz) between Law et al. [36] table 2 (Law) and
equation (101b) of this thesis; xd = 0.381,∆l = 0.005

ε = 0 ε = 0.16 ε = 0.32 ε = 0.48

Mode Law Dixit Law Dixit Law Dixit Law Dixit

2 22.86 22.43 22.80 22.43 22.77 22.42 22.77 22.42
3 62.76 62.81 62.62 62.80 62.38 62.80 62.89 62.80
4 123.05 123.08 122.56 122.85 121.70 122.62 120.0 122.40
5 203.24 203.46 202.27 202.91 201.05 202.36 198.49 201.81
6 303.45 303.93 302.49 303.45 301.51 302.97 299.5 302.49
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Figure 11: Modes and curvature of undamaged (normalized to 2) and damaged (normal-
ized to 1) beam for experimental mode shapes (dots), experimental curve-fitted curvatures
(dashed lines), analytical mode shapes and curvatures (continuous lines)

6.3.2 Experimental verification

Experiments were conducted to verify the theory using the experimental setup given in

figure 9. PolytecTM SDLV was used to generate an input voltage. The signal generated

(4V) by the SDLV was amplified 100 times by an amplifier. A broadband white noise was

used as the input excitation. A piezoelectric actuator was fixed towards the clamped end of

the beam to provide the input excitation. Frequencies up to 2 KHz were excited. A low-pass

signal filtering was used. A grid consisting of 105 points was used for an undamaged beam.

For the damaged beam 505 points were used to take the readings. More points were used

for the damaged case to be able to see any minute changes in mode shapes and curvature

shapes at the damage location. The resonance frequencies where the frequency response

function, shown in figure 10, reaches peak amplitudes and the phase change is 180◦, were

retained as modal frequencies. The sharp peaks other than the peaks for natural frequencies

are harmonics of the power signal, which occur at multiples of 60 Hertz. 10 readings were

taken with remeasure option being switched on. Data acquisition was done using Polytec

data acquisition software. The obtained modal data, in universal file format, was processed

using an in-house developed software. The average was taken for the points across the beam
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Figure 12: Damage measure for clamped-free beam, dashed (experimental), solid (analyt-
ical)

to simulate the beam neutral axis. curve-fitting was done to get a continuous curve for the

operating deflected shape, which was assumed to be equivalent to the mode shape for this

experiment.

The results presented in the chapter were verified by doing experiments on a cantilever

beam. A fiber glass beam was used for the purpose. Modes were calculated experimentally

for both damaged and undamaged beam. A rectangular notch shaped damage was made

at 0.35 the length of the beam (xd = 0.35L). The damage was 0.1 the depth (ε = 0.3), and

the notch length was 0.05 the length of the beam (∆l = 0.05L). The Young’s modulus for

the beam was 29 GPa, density of the beam 3749 kg/m3, the length 0.267 m, the moment

of inertia 1.28× 10−10 m4 and area 10−4 m2

In Table 1 the analytical and experimental values for natural frequencies of the beam

are given. The experiments show close correlation with analytical values for lower modes,

for higher modes the difference in the readings increases. The experimental setup had to

be dismantled for making the notch after the readings on the undamaged beam. The end

conditions therefore may change and the readings may be affected. To further validate the

derivation using results from published work, the natural frequency values given by Law et

al. [36] in Table 2 are compared with analytical values from equations (101b), (98), (95).

The Table 2 of Law et al. is reproduced for easy reference. The saw width is given to be 1.3

mm, accounting for the kerf and material loss, the extent of damage is estimated to be (∆l =
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0.005) as deduced from the thickness of the blade used to make the saw cut. The position

of damage was (xd = 0.38). Natural frequencies for three values of ε = 0.16, 0.32, 0.48 are

given in the chapter. The Young’s modulus E = 207GPa, mass density ρ = 7832 kg/m3,

area A = 4.75× 10−4m2 and area moment of inertia I = 1.43e10−8m4. The comparison is

given in Table 2. The maximum percentage difference in the values is 2%. A point to note

is that Law et al. missed the first natural frequency and the values provided are from 2nd to

6th rather than 1st to 5th as claimed. This can be easily ascertained by looking at the first

undamaged frequency value which comes out to be 3.58 Hz. Looking at the values of the

natural frequencies it can be said that the presence of damage is indicated by a change in

natural frequency, but its location and magnitude cannot be directly ascertained this way.

In figure 11, experimental and analytical modes and curvature shapes for both the

damaged and undamaged beams for modes 2 and 4 are plotted. In the mode shape results

dots are the experimental data, and the continuous lines are the analytical data results. The

experimental data were curve-fitted. The curve-fitted experimental curvatures are plotted

as dashed lines. The analytical curvature plots are shown as continuous lines. The damaged

beam mode shape and curvature shapes are normalized to unity and the undamaged beam

mode shape and curvature to 2 to be able to easily distinguish them. Calculated damage

measures 1− 4 are given in figure 12. The dashed lines gives the experimental value of the

damage measure and the continuous lines give the theoretical values. Mode shape 2, which

is more sensitive to damage, shows a disturbance at the place of the actuator attachment to

the beam. This can be attributed to the additional mass provided by the actuator. Mode

3 has a unique phenomenon occurring, as the natural frequency value coincided with the

natural harmonics of the power supply (420 Hz). As a result there was experimental noise

in the measurement of the mode shape. Damage measures still indicated damage, but the

correlation with analytical values was lost. figure 13 shows the third mode shape of the

damaged beam along with the damage measure at a different scale from the one shown in

figure 12.
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Figure 13: Mode shape, dots (experimental data), continuous line (analytical) clamped-
free beam 3rd mode, damage measure, dashed (experimental), solid (analytical)

6.4 Discussion of Results and Conclusions

• A procedure is presented the mode shapes and natural frequencies of damaged beams

in terms of modes and natural frequencies of the undamaged beam together with

damage parameters such as location and magnitude of damage. Single beam analysis

without any assumptions regarding the physical behavior of damage is used. This

was verified by using natural frequencies (Table 1 and 2), mode and curvature shapes

(figures 3, 4 and 11) and an improved damage measure based on strain energy (figures

5 and 12). The procedure was shown to be applicable to beams with different end

conditions.

• It was seen that the modal displacement and curvature shapes for damaged and un-

damaged were similar, but it was difficult to ascertain the position of the damage

using them.

• Regarding the natural frequencies, although a change in their value indicates the

presence of damage, they were not sufficient to directly give the location of damage

nor its magnitude.

• The change in natural frequencies is given by ελ1
n, where λ1

n is given by equation (95).

It is seen in the equation that a decrease in mass increases the natural frequency and a

decrease in stiffness decreases it. The change in the natural frequency is an aggregate
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effect consisting of these two contradictory effects, so the natural frequency cannot

serve as a robust indicator of the magnitude of the damage.

• The change in mass per unit length effect, which has been neglected by many re-

searchers, was successfully considered in this chapter. In some types of damage, such

as delamination where there is no change in the mass like delamination, the change

in mass per unit length can be neglected. In other types of damage however, such as

those due to corrosion and erosion, this effect should be accounted for.

• The analytical expressions derived for mode shapes, curvature shapes, natural fre-

quencies and an improved strain energy based damage measure, are verified using

experiments. The improvement in the damage measure stems from not assuming that

the bending stiffness of the damaged beam is constant and equal to that of undamaged

beam when calculating the strain energy of the entire beam. It is also not assumed that

the bending stiffness of the element in which the damage is located is constant.The

damage measure was shown to be extremely sensitive to the damage. The explanation

of the sensitivity is that the damage measure is a function of strain energy, which in

turn is a product of stiffness and curvature, both of which are discontinuous at the

damage location.

• A limitation of the damaged measure was that it depended on accurate measurement

of damaged mode shapes.

• Two damage parameters one giving global damage influence Γ(x, xd,∆l, ε) and another

giving acute local damage influence Λ(xd,∆l, ε) were discovered. Since Λ(xd,∆l, ε) is

a function of damage magnitude (ε and ∆l), the damage measure can be used to find

the damage magnitude. This is a topic for further study by the author.
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Chapter VII

APPLICATION TO TIMOSHENKO BEAM THEORY

The framework as described in chapter 4, which is a general formulation that is applicable

to all the damaged, linear elastic structures , is applied to Timoshenko beam theory in this

chapter. Timoshenko beam theory is taken as an example, and its results are compared

with results using Euler-Bernoulli beam theory and finite element models. The range of

applicability for damage characteristics, such as depth and extent of damage and beam

characteristics like slenderness ratio and Poisson’s ratio, are ascertained for Timoshenko and

Euler-Bernoulli beam theories. Unlike most methods for analysis of damaged structures,

the mass reduction along with the stiffness reduction where applicable are considered. A

rectangular notch-like non-propagating damage are taken as examples of the damage.

7.1 Results And Verification

Equations (41) gives the solution to the nth order correction to the eigenvalue. The first

order correction is given by the equation (47). In this chapter the first order correction

to eigenvalue is used to obtain corrected eigenvalue of the damaged beams for both Euler-

Bernoulli and Timoshenko beam theories using the following equation

λz = λ0
z + ελ1

z (113)

where λz is the non-dimensionalized eigenvalue and the superscripts represent the order of

perturbation and ε represent the ratio of the depth at the damage location to the total depth

of the beam. The corrected eigenvalues are then used to calculate the natural frequencies

of the damaged beams for both the theories. The natural frequencies are calculated using

the following expressions.

ω =
1

2π

√
EI3λz
ρAL4

ω =
1

2π

√
λzκG

ρL2
(114)
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Table 3: Frequency comparison (Hz): simply-supported beam; σ = 3.70 × 10−4, e = 3.2,
ε = 0.2, ∆Lz = 0.04/3; values that vary more than 5% are given in bold. D-Damaged,
U-Undamaged

FE-Model Analytical, EB Analytical, TB

Mode U D U D U D

1 47.97 46.58 48.33 46.78 47.96 46.45
2 187.88 181.29 193.30 184.72 187.69 179.85
3 409.13 406.53 434.93 432.94 408.23 406.48
4 697.77 687.66 773.22 760.29 695.27 685.69
5 1039.7 1009.1 1208.4 1148.7 1034.4 997.87
6 1422.3 1404.8 1739.7 1710.6 1412.9 1396.7
7 1835.6 1822.5 2368.0 2357.1 1820.7 1812.1

where ω represents the natural frequency, E the Young’s modulus, I3 the area moment of

inertia, ρ the material density, κ the shear factor, A the area, L the length , and G the

shear modulus of the beam, respectively.

7.1.1 Analytical results

To test the ability of the procedure presented in the previous chapter to correctly predict the

results for a damaged beam using Euler-Bernoulli and Timoshenko beam theories, a finite

element model of the beam was constructed in AbaqusTM [29] with both simply-supported

and clamped-free end conditions. The constants involved were E = 62.1GPa, G = 23.3GPa,

κ = 5/6, L = 3m, h = 0.2m, b = 0.1m, xd = 0.3L, k = 9, ∆Lz = 0.04/3, ρ = 2700Kg/m3,

ε = 0.2h. The beam was modeled with plane stress elements of size 0.02m, the material

constant poisson’s ratio was ν = 0.33. Results for simply-supported end condition are

presented in Table 3, and those for clamped-free end condition in Table 4. The two end

conditions collectively simulated the symmetric and asymmetric cases.

The maximum percentage difference between the values of the finite element model

results and those using the analytical derivation presented using first order correction to

natural frequencies for Timoshenko beam theory was about 1% for both clamped-free and

simply-supported beams. Euler-Bernoulli beam theory results were accurate for only the

first two natural frequencies

The next objective is to demonstrate that the inertia effects due to the damage are
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Table 4: Frequency comparison (Hz): clamped-free beam; σ = 3.70 × 10−4, e = 3.2,
ε = 0.2, ∆Lz = 0.04/3; values that vary more than 5% are given in bold. D-Damaged,
U-Undamaged

FE-Model Analytical, EB Analytical, TB

Mode U D U D U D

1 17.17 16.61 17.21 16.34 17.15 16.29
2 105.43 104.24 107.89 107.76 105.28 105.13
3 286.29 277.20 302.10 291.4 285.61 277.07
4 538.50 532.23 591.99 583.82 536.60 532.05
5 848.93 840.96 978.60 973.51 844.82 838.67
6 1204.4 1169.9 1461.9 1395.8 1196.9 1157.05
7 1594.2 1569.5 2041.8 1976.1 1582.1 1557.38

Table 5: Comparison of mass defect vs stiffness defect (non-dimensionalized); σ = 3.70×
10−4, e = 3.2, ε = 0.2, ∆Lz = 0.04/3

simply-supported (SS) clamped-free(CF) Ratio

Mode Mass Stiffness Mass Stiffness SS CF

i Emii Esii Emii Esii Emii/Esii Emii/Esii
1 -0.09 -0.26 -0.00048 -0.0258 0.35 0.02
2 -7.49 -21.73 -1.724 -1.901 0.35 0.91
3 -14.84 -30.87 -75.115 -157.46 0.48 0.48
4 -193.90 -462.93 -198.031 -379.543 0.42 0.52
5 -1566.03 -3956.01 -625.56 -1357.3 0.40 0.46
6 -2020.82 -4214.04 -7578.37 -19245.9 0.48 0.39
7 -2928.52 -4928.94 -13525.6 -29794.0 0.59 0.45

not higher-order effects. The inertia effects for the two cases is given in Table 5. The

observations from Table 5 are that it is not reasonable to neglect the inertia effect where

it occurs, since it has an important bearing on the overall behavior of the damaged beam.

The ratio is as high as 91%. Theoretically, there is a possibility of the inertia effect being

greater in magnitude than the stiffness effect. The frequency of the damaged beam in that

case would increase.

The next objective is to test the domain of validity of the theory. The four variables

that influence the results are the depth of damage, which is measured by ε giving the ratio

of the depth of the damage to the overall depth of the beam; ∆Lz, giving the extent of the

damage; e, giving the ratio of the Young’s modulus to the shear modulus of the material;

and σ, which is the slenderness ratio, i.e., the ratio of the area moment of inertia and the

area times the length squared of the beam. The first two are damage parameters and the
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last two are beam parameters. The results are assumed to be reasonable if the theory gives

values within 5% of those given by AbaqusTM results. If the results are not within the

reasonable range then they are written in bold.

The depth of damage effect is investigated by considering widths where ε = 0.025, 0.1,

0.4 in Tables 6 and 7. For ε = 0.2 and for undamaged case, the results are already given

in Table 3 and 4. It is seen that the classical beam theory gives reasonable results for only

first two natural frequencies while Timoshenko beam theory gives reasonable results with

natural frequencies within 5% up till ε = 0.4 for the first seven natural frequencies.

The extent of damage effect is investigated by considering depths where ∆Lz = 0.01/3,

0.05/3, 0.1/3 in the Tables 8 and 9. For ∆Lz = 0.04/3 and for undamaged case, the

results are already given in Table 3 and 4. It is seen that the Euler-Bernoulli theory gives

reasonable results only for first two natural frequencies while Timoshenko beam theory

gives reasonable results with natural frequencies within 5% until ∆Lz = 0.1/3 for the first

seven natural frequencies. The range may be further improved by using the damage profile

function to be a step function instead of the approximation of a delta function as done

by Dixit and Hanagud [17] for Euler-Bernoulli beams. The effect of the ratio of Young’s

modulus to the shear factor times shear modulus given by e forms the next part of study.

Reasonable values of Poisson’s ratio ν for engineering materials are between 0.2 and 0.4.

The results are presented for ν = 0.417, 0.167 (e = 3.4, 2.8) in Tables 10 and 11. Since this

is a material property, the values for the undamaged beam frequencies also change and are

given in the tables. It is noted, however that the ν values do not affect the Euler-Bernoulli

beam frequencies. This result is on expected lines since ν affects the torsional frequency of

classical beam theory (Euler-Bernoulli for bending and St. Venant theory for torsion).It is

seen that the Timoshenko theory is able to give values within 1% for both simply-supported

and clamped-free beams for both the limiting values of e. The Euler-Bernoulli beam theory

is able to predict correct values for the first two natural frequencies. Next, the last beam

factor σ, a measure of the slenderness ratio, is investigated and results presented in Tables 12

- 17. The slenderness ratio can be altered by either changing the length or by changing the

depth. If two beams has the same slenderness ratio but different dimensions, the beam with
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greater length and corresponding greater depth is more accurately represented by the beam

theories that the one with lower length and corresponding lower depth. This deduction

as evident from the tables, holds for both of damaged and undamaged case. First the

slenderness ratio of 1
30 is used in Tables 12 and 13. The length is changed (increased) and

the depth remains the same as the base beam given in Tables 3 and 4, and the depth is

changed but the length remains the same as the base beam. Even Euler-Bernoulli beam

theory gives accurate frequency estimation for this beam.

The next case is for slenderness ratio of 1
10 in Tables 14 and 15. All frequencies using

Euler-Bernoulli beam theory fall outside the 5% range. On the other hand Timoshenko

beam theory results are within an average difference of less than 1% for the first seven

natural frequencies. The next slenderness ratio considered is 1
5 in Tables 16 and 17. The

analytical derivation using Timoshenko beam theory gives frequency values that are within

2% for the first seven natural frequencies. An important thing to note is that the last row of

the Table gives frequencies values belonging to the so-called second frequency branch. The

frequencies even for this branch are predicted to an accuracy of within 2% in the example

given.

The theory needs the width of damage as an input, none of the four papers [64, 33, 39,

65], in the same area and preceding the work presented in this thesis has this value as input.

Therefore, only qualitative comparison is done. In an excellent work by Khaji et al. [33], a

closed-form solution for a damaged Timoshenko beam using an approximate formulation is

given. The results as calculated using the theory presented is given in Table 16. Both the

works give comparable results.

7.1.2 Experimental verification

In the previous chapter, experimental validation was done for an Euler-Bernoulli beam.

The validation is extended to a Timoshenko beam using the same setup as shown in figure

9.

In Table 18 the analytical and experimental values for natural frequencies of the beam

are given. The analytical values show close correlation to experiments for lower modes using
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Table 18: Frequency results (damaged beams): comparison analytical vs experimental
(Hz), Timoshenko and Euler-Bernoulli beam theory; σ = 1.81× 10−5, ε = 0.1, ∆Lz = 0.05,
e = 3.12

Mode Expt EB % error(EB) TB % error(TB)

1 25 24.7 1.20 23.8 4.80
2 155 157.3 1.48 154.4 0.39
3 420 435.9 3.79 415.5 1.07
4 801 870.3 8.66 865.7 8.07
5 1326 1406.3 6.06 1328.6 0.20

Euler-Bernoulli beam theory. For higher modes the differences increase. When Timoshenko

beam theory results is used, the percentage error decreases substantially for all natural

frequencies except the first. White noise was used as an excitation but for the first mode

the mode shape obtained using white noise was not smooth therefore sinusoidal excitation

was used at the peak for the first mode for the frequency response function as shown in

figure 10. Therefore, there was decrease in the accuracy for measurements for the first mode.

It can be concluded that the formulation presented is able to predict natural frequencies

with fair accuracy.

7.2 Conclusions And Suggestions For Further Study

• An analytical framework to tackle problems of damaged elastic structures is used

to compare results of Euler-Bernoulli and Timoshenko beam theories for damaged

beams.

• The effect of rotational kinetic energy and shear deformation energy on natural fre-

quencies is investigated for the two damage parameters ε and ∆Lz, which give the

ratio of depth of damage to total depth of the beam and the ratio of the length of

damage to total length of beam, respectively.

• As far as damage parameters are concerned, the theory is able to give values within

5% of those predicted by finite element models, for damage with depths 40% of the

total depth of the beam and extent of damage ∆L = 0.1L.

• The beam parameters σ and e, which denote slenderness ratio and ratio of the Young’s
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modulus to shear factor times shear modulus, respectively, are also studied. It was

found that for the range of e between 2.8 and 3.4 (ν = 0.167, 0.417) and for σ values

that correspond to slenderness ratio up through 1
3 , the difference between the fre-

quencies as given analytically and finite element models, was within 5%. The First

seven natural frequencies are considered for comparison. Euler-Bernoulli beam theory

is able to give a reasonable estimation for the first few frequencies.

• The changes in mass distribution (mass per unit length) due to damage, which has

been neglected by most researchers until now has been incorporated. Its importance

is demonstrated by showing that the effect is of the same order as the reduction in

bending stiffness. This result is based on the consideration of first order effects in

both mass and stiffness.

• A direct fallout of the study would be to study the accuracy of results for plate and

shell structures. An interesting parameter that arises in the derivation is ηnj , which

is the coefficient of eigenfunctions for the undamaged beam when used to find the

particular solution for perturbed differential equations. The ability of the parameter

to predict areas of damage should be investigated.

• The method presented used perturbation method, which led to discretization of the

change due to the damage, as per the orders of perturbation. This discretization can

be used to evaluate the desired accuracy and the required orders of perturbation for

that accuracy.
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Chapter VIII

MODEL DAMAGES TO KIRCHHOFF’S PLATE THEORY

In this chapter the model for damaged structures as presented in chapter 4 is used to obtain

their vibration characteristics, is applied to plates. There are two inputs to the model, the

damage model and the modes and natural frequencies of the undamaged structure. The

damage model is presented for a damage of arbitrary shape and size. Examples of for

four different types of damage are presented: a point damage, a line damage, a curvilinear

damage and a two dimensional rectangular shaped area of damage. Although, the method

is applicable to any arbitrary set of boundary conditions of a self-adjoint system, for plates

only sets of boundary conditions that have at least two opposite edges simply-supported

have been solved in the literature.

Modeling of damage in plate structures is mathematically more challenging than mod-

eling it in beams. The first challenge, which is applicable to all the theories that have been

used to model damage in beam structures, is the mathematical representation of the damage

in two dimensions. The second challenge is particularly applicable to the method presented

in this thesis. The method uses the modes of the undamaged structure to determine the

modes and natural frequencies of the damaged structure. The modes of the undamaged

plate structures for some boundary conditions is a challenging problem in itself, which may

restrict the applicability of the theory presented.

8.1 Improvements to damage model

The problem of modeling of damage in two dimensional structures has been addressed in

the paper by Sharma et al. [59]. However, there were some missing terms in the perturbed

differential equations. The eigenvalue problem for the Kirchhoff’s plate theory is given by

equation (14) in the paper, which is reproduced below.

∇2D∇2φ− (1− ν)

(
∂2D

∂x2
2

∂2φ

∂x2
1

− 2
∂2D

∂x1∂x2

∂2φ

∂x1∂x2
+
∂2D

∂x2
1

∂2φ

∂x2
2

)
−mλφ = 0 (115)
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The following substitutions are made using equations (11), (12), (15), and (16) as given in

the paper, which are reproduced below.

φ = φ0 − εφ1 λ = λ0 − ελ1 m = m0(1− εγD
3

) D = D0(1− εγd) (116)

Upon substitution the first order perturbed differential equation is calculated to be

∇2D0∇2φ1 − (1− ν)

(
∂2D0

∂x2
2

∂2φ1

∂x2
1

− 2
∂2D0

∂x1∂x2

∂2φ1

∂x1∂x2
+
∂2D0

∂x2
1

∂2φ1

∂x2
2

)
−m0λ

0φ1 =

∇2D0γD∇2φ0 − (1− ν)

(
∂2D0γD
∂x2

2

∂2φ0

∂x2
1

− 2
∂2D0γD
∂x1∂x2

∂2φ0

∂x1∂x2
+
∂2D0γD
∂x2

1

∂2φ0

∂x2
2

)
− m0λ

0φ0γD
3

−m0λ
1φ0 (117)

The second term in the left hand side of the above equation is missing in the paper [59].

This error is corrected as shown in the derivation below. Other improvements are that

frequency results are

1. Instead of only first order perturbed differential equation, n-th order perturbed dif-

ferential equation are given.

2. Instead of a damage parallel to x and y axes only, analytical representation of a

randomly oriented curvilinear damage is given.

3. The complementary solution not given in [59]. This is part of the solution is provided

in this theory presented in this chapter.

4. The theory presented in this chapter is presented as an application to the the theory

presented in chapter 4 rather than a stand alone theory as in [59].

5. The results obtained are compared with finite element based model. This has not

been done in [59].

8.2 Application to plates

The general framework, to model damages in elastic structures which are self adjoint, to

obtain eigenfunctions and eigenvalues correct through the nth order is presented in an earlier

chapter 4. In the chapter, first the general eigenvalue problem to determine the mode shapes
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Figure 14: Different types of damage on a plate, p-point damage, l-line damage, c-curve
shaped damage and r-a two dimensional rectangular shaped damage. The prime denotes
the axes oriented in damage (damage axes) and x, y denote axes oriented in the plate along
the sides of the plate.

and natural frequencies of elastic structures like rods, beams, plates and shells is given by

equation (2). The equation consists of L as the stiffness operator, M as the mass operator, φ

as the eigen function, and λ as the eigenvalue which may be used to find natural frequencies.

For the Kirchhoff’s plate theory L is a partial differential operator. The expressions for the

eigenvalue equation are given in equation (5). Next, the general representation for boundary

conditions is given by equation (7). The specific boundary conditions for Kirchhoff’s plate

theory for the three support conditions: clamped, simply-supported and free edges are given

by equation (10)

8.2.1 Damage model

The next objective is to develop an accurate damage model to represent the damage math-

ematically. The purpose of these damage models is to obtain the damage profile functions;

see equation (13). Several damage models for beams are given in the chapter in equations

(14) to (17).

Four distinct types commonly occurring types of damage in plates are shown in figure 14.

The damage profile functions for these types of damage are given next. The representation
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for a rectangular cut and a point damage on the surface are given by

γ(x1, y1) = [H(x1 − x1d)−H(x1 − x1d −∆l1)] [H(y1 − y1d)−H(y1 − y1d −∆l2)]

γ(x1, y1) = ∆l1∆l2δ(x1 − x1d)δ(y1 − y1d) (118)

where ∆li gives the width of the damage in the ith direction. Physically the most common

type of damage is a crack. A straight line crack is mathematically represented by a pair of

delta and Heaviside functions.

γ(x1, y1) = ∆l1δ(x1 − x1d) [H(y1 − y1d)−H(y1 − y1d −∆l2)] (119)

Alternatively a 2-dimensional crack is given by defining it vectorially as

γ(s)n̂ = f1(s)̂i+ f2(s)ĵ γ(s)n̂ = ŝi+ (ms+ c)ĵ (120)

where fk(x1, x2), k = 1, 2 are arbitrary functions along the direction of unit vectors î and ĵ,

and n̂ is a unit vector along the curve. The second equation is an example for a straight line

crack where m and c are the slope and y-intercept constants, associated with the straight

line, respectively.

Once the damage profile functions are determined, the different geometric quantities

such as area and area moment of inertia are determined to obtain different orders of stiffness

and mass operators. These operators for plates are given as

Lz0 = ∇2∇2 Mz0 = 1 Mz1 = γz(ζ1) λiz =
ρλi12(1− ν2)

Eh2
φi(x1, x2) =

u3(x1, x2)

h

Lz1 =
∂2M2

∂x2
1

− 2
∂2M12

∂x1∂x2
− ∂2M1

∂x2
2

M1 = −3γ

(
∂2

∂x2
2

+ ν
∂2

∂x2
1

)
M12 = −3γ(1− ν)

(
∂2

∂x2∂x1

)
M2 = 3γ

(
∂2

∂x2
1

+ ν
∂2

∂x2
2

)
(121)

In the above equations, Mz0 , Mz1 , Lz0 , Lz1 represent stiffness and mass operators andλzi

the non-dimensionalized eigenvalue. It should be noted that there are other representations

possible, especially for Lz1 , however, the above representation was found to be well suited

to represent the equations in weak form, since the boundary terms are easily visible and

separated. Also, x1 and x2 are retained and are not non dimensionalized for ease of algebraic

manipulation.
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The next step is to perturb the eigenfunctions and eigenvalues as shown in equation.

(26). This together with the damage model results in obtaining the perturbed differential

equations as given by equations (28a) to (28d).

8.2.2 Perturbed equations and their solution

The characteristics of the perturbed differential equations are reproduced below.

1. Through the process of perturbation and by using the damage model, the homoge-

neous differential equation with variable coefficients is changed to a series of non-

homogeneous differential equations with constant coefficients.

2. The first differential equation of this series is the same as that representing the eigen-

value problem for the undamaged case.

3. The remaining equations in the series of differential equations have the same homo-

geneous parts as those of the first equation and the undamaged case.

4. The unknowns for the nth order equation are the eigenfunction φn in the left hand

side of the equation and the eigenvalue λnz in the right hand side of the equation.

5. The layout of the nth order equation is given in a form so that the unknowns are given

separately in individual terms. The second term in the right hand side involving

λ0
z needs to be written separately to be able to write the unknown terms involving

λ0
z in the left hand side. The third term in right hand side involving Mz0 is written

separately to be able to use the orthogonality condition to simplify the final expression.

The next objective in the process is to solve the perturbed differential equations. The

zeroth-order equation, which is the same as the equation for the undamaged case is solved

using the procedure given by Magrab [43]. The same procedure is followed to solve the

zeroth order equation which is also constitutes the homogeneous part of the higher order

equations. If the plate is simply-supported in the x1 direction and clamped in the x2

direction, then the zeroth-order equation may be solved by using separation of variables.

83



www.manaraa.com

Therefore, the eigenfunction is represented as

φ0(x1, x2) = X(x1)Y (x2) X(x1) = sin (γmx1) 0 < x1 < Lx (122)

where Lx is the length of the plate in the x1 direction and γm = mπ
Lx

. Then, the solution

for Ym(x2) is given by

Ym(x2) = C1m cosh (δmx2) + C2m sinh (δmx2) + C3m cos (εmx2) + C4m sin (εmx2)

δ2
m = Ω2

m + γ2
m ε2m = Ω2

m − γ2
m Ω4

m = λ0
z (123)

The constants Cim are determined by applying the boundary conditions given by

Y (0) = Y ′(0) = Y (Ly) = Y ′(Ly) = 0 (124)

Applying the boundary condition, Y (x2) is determined to be

Y (x2) = C1m

[
cosh (δmx2) +

C2m

C1m

sinh (δmx2)− cos (εmx2) +
δmC2m

εmC1m

sin (εmx2)

]
δmC2m

εmC1m

= −δm sinh (δm) + εm sin (εm)

δm [cosh (δm)− cos (εm)]
= − εm [cosh (δm)− cos (εm)]

εm sinh (δm) + δm sin (εm)
(125)

The characteristic equation is given by

2εmδm = (ε2m − δ2
m) sinh (δm) sin (εm) + 2εmδm cosh (δm) cos (εm) (126)

A useful representation of the characteristic equation which makes finding the roots easier

compared to the above equation is

εm = nπ + (−1)nζ2m − ζ1m sin (ζ1m) =
2εmδm cosh (δm)

R
cos (ζ1m) =

(ε2m − δ2
m) sinh (δm)

R

sin (ζ2m) =
2εmδm
R

R =

√
4ε2mδ

2
m cosh2 (δm) + (ε2m − δ2

m)2 sinh2 (δm) (127)

For the nth order equation the unknowns are φn and λnz . φn = φn |complementary +φn |particular.

The particular part of the solution is expanded in terms of the modes of the undamaged

structure using expansion theorem φnk |particular=
∑∞

p=1 η
n
kpφ

0
p. This implies φn |complementary=

φ0. The solution procedure to the nth equation is given in the chapter 4. In the same chapter

the first order correction to natural frequencies is given by

λ1
zn =

α1nn − λ0
znβ1nn

Cn
(128)
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where∫ 1

0
(φ0
m)TMz0φ

0
ndζi = δmnCm = δmnCn

∫ 1

0
(φ0
m)TLz0φ

0
ndζi = δmnλmCm = δmnλnCn

(129)

where δmn is the Kronecker delta. Notice the orthogonality condition does not hold for Mzj

and Lzj where j ≥ 1. For those cases the following notations would be used to represent

the equations compactly∫ 1

0
(φ0
m)TLz1φ

0
ndxi = α1mn

∫ 1

0
(φ0
m)TMz1φ

0
ndxi = β1mn (130)

As detailed in the solution procedure of undamaged plates, in the above equations m = rs

and n = pq where r, s, p, and q are integers. Computation of the energy equivalent

inertia loss due to damage is straight forward, however energy equivalent stiffness loss due

to damage involves representation of equation (130) using Lz1 from equation (121) and

converting it into weak form to give

α1mn =

∫ Lxi

0
(φ0
m,x1x1

)T 3γφn,x1x1
+ ν(φ0

m,x1x1
)T 3γφn,x2x2

+ 2(1− ν)(φ0
m,x1x2

)T 3γφn,x1x2
+

(φ0
m,x2x2

)T 3γφn,x2x2
+ ν(φ0

m,x2x2
)T 3γφn,x1x1

dxi β1mn =

∫ 1

0
(φ0
m)Tγφ0

ndζi (131)

8.2.3 Coordinate axes difference effects

The integrals in the above equations are be written as
∫
γ(x′1, x

′
2)f(x1, x2). As given in

the section 8.2.1 about damage model, the axes in which the damage is defined and those

in which the plate is defined may be different. There are two options for calculation of

energy equivalent inertia and energy equivalent stiffness loss due to damage, one, change

the damage coordinates in which the function γ is defined to plate coordinates or vice

versa. Both will yield the same results since integrals are independent of the coordinates.

The authors are of the opinion changing the plates coordinates of the function f will yield

simpler computations, since the function γ consists of discontinuous functions like Heaviside

functions or delta function. For curvilinear thin cracks this problem does not happen as

long as the curve is defined as in equations (120). The integral can then be computed using∫ sf
si
f [x1(s), x2(s)] | dγds | ds, si and sf are the start and end points on the damage curve.

85



www.manaraa.com

Table 19: Natural frequencies (Hz): plates pinned at all boundaries, with damage along x
axis. Lx = 1.5m, Ly = 1.0m, E = 71Gpa, ρ = 2700kg/m3, ν = 0.3, ε = 0.1, h = 0.01m

Mode(i,j) FEA (U) Anal(U) FEA (D) Anal (D) % Diff (U) % Diff (D)

1,1 35.093 35.210 34.511 35.070 0.33 1.62
1,2 67.453 67.710 66.430 67.430 0.38 1.51
1,3 121.49 121.88 119.66 121.52 0.32 1.55
1,4 197.13 197.71 194.00 197.33 0.29 1.72
2,1 108.11 108.34 106.42 106.88 0.21 0.43
2,2 140.26 140.84 138.08 136.31 0.41 -1.28
2,3 194.03 195.00 191.09 187.63 0.50 -1.81
2,4 269.42 270.84 265.42 261.42 0.53 -1.51
3,1 229.69 230.21 225.50 229.13 0.23 1.60
3,2 261.70 262.72 257.65 258.89 0.39 0.48

8.3 Results

Analytical (Anal) and Finite Element (FEA) results using Kirchhoff’s plate theory in Table

19. In the table Lx = 1.5 m, Ly = 1.5 m, E = 71 Gpa, ρ = 2700 kg/m3, ν = 0.3, ε = 0.1,

h = 0.01 m. The damage is along x axis, located at 0.25 m either side of the center of

plate. The plate was pinned at all boundaries. Two layers of 3 − D tetrahedral elements

were used with in plane size about 0.02 and transverse size 0.005 to keep the aspect ratio

below 1 : 4. For the damaged plate, the depth of damage was kept to be 0.001m so that

ε = 0.1. Boundary along the damage was meshed at 0.004 m in plane, to again keep the

aspect ratio below 1 : 4. The damage had to be given a breath too (along y axis). This was

kept to be at a minimum of 0.002 m.

8.4 Conclusions

• The results given in Table 19 show that the frequencies predicted by the theory are

within an accuracy of 2% for the damaged case.

• The theory yields an analytical model with potential to be able model arbitrary shaped

areas of damage on plates.

• The veracity of the framework presented in chapter 4 is shown for Kirchhoff’s plate

theory.
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Chapter IX

PARTIAL MODE CONTRIBUTION METHOD

A new physical parameter is presented and it is applied to damage detection. It addresses

the two main challenges in the field of vibration based structural health monitoring, the

sensitivity of detection and the requirement of data from baseline state. The parameter

is also shown to be not affected by noise in the the detection ambience. Assuming the

damaged structure to be a linear system the response can be expressed as the summation

of the responses of the corresponding undamaged structure and the response (negative

response) of the damage alone. If the second part of the response is isolated, it forms

what can be regarded as the damage signature. Damage signature gives a clear indication

of the damage. In this chapter the occurrence of damage signature is investigated when

the damaged structure is excited at one of its natural frequencies, and is called partial

mode contribution. The existence of damage signature as partial mode contribution is

first ascertained using analytical derivation, thereupon it is ascertained using finite element

models and experiments. The limits of damage size that can be determined using the

method are also investigated.

9.1 Introduction

With that background, the main contribution of this portion of the thesis is; alleviating

the of the lack of sensitivity of vibration based techniques by presenting a new physical

quantity, which gives accurate estimation of areas of damage by making the damage de-

tection parameter solely dependent on the damage. This is achieved by first expressing

the response of the damaged structure as a linear combination of the sum of the responses

of the undamaged part of the damage structure and the response due to damaged part of

the damaged structure. Subsequently, the part of the response due to the damage of the

structure alone ‘damage signature’ is isolated to give information regarding the location of

damage. The technique is applied to the free vibration modes (the term vibration modes
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is used to signify the displacement mode, sectional rotation mode or any of sectional strain

modes (bending and shear)) of the damaged structure. The free vibrations modes of the

damaged structure are expanded, using the undamaged modes of the structure, as the basis

functions as shown below,

µid = χµiud +

∞∑
j=1,j 6=i

ξijµ
j
ud = R1(x) +R2(x) χ < 1, χ >> ηij (132)

where µ is the mode shape, the subscript d denotes damaged and ud denotes undamaged,

χ and ξ are numerical factors. Then, the second part of the response (R2(x)) gives the

“damage signature”. Damage signature has a definitive spike at the damage location as it

exist entirely due to the damage. In this case, the damage signature arises due to partial

mode contribution of the damaged structure and hence the method is called ‘Partial Mode

Contribution Method’. In this chapter partial mode contribution is used to identify the

damage.

An important word of caution is that R2(x) is not the difference between the mode

shape of the undamaged and damaged structure. Mathematically the difference between

the two is given by

(1− χ)µiud −
∞∑

j=1,j 6=i
ξijµ

j
ud (1− χ) >> ξij (133)

Such a difference would be composed of a constituent of the main undamaged mode (1 −

χ)µiud, which is sometimes large enough to mute out any damage indication expressed by

R2(x). This explains the lack of sensitivity of vibration based damage detection methods,

which were based on the difference between normalized modes of damaged and undam-

aged structures. Not requiring the response of the undamaged structure also removes the

limitation of current damage identification techniques that require it.

9.2 Verification

The equation (44) in chapter 4, which gives the solution of the nth order mode shape, and

equation (82), which gives the perturbation equation of mode shape, can be combined to
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obtain the mode shape for the damaged beam.

φk = φ0
k +

∞∑
n=1

εn

φ0
k +

∞∑
p=1,p 6=k

ηnkpφ
0
p

 (134)

φk =
1

1− ε
φ0
k +

∞∑
n=1

εn

 ∞∑
p=1,p 6=k

ηnkpφ
0
p

 (135)

The analytically derived equation (134) and theoretically reasoned equation (132) are of the

same form. Comparing equations (134) and (132) one gets µid = φk, µ
i
ud = φ0

k the values

obtained for χ and ξ are

χ =
1

1− ε
ξkp =

( ∞∑
n=1

εnηnkp

)
(136)

Hence, the theoretical assertion of the introduction section is verified by the rigorous ana-

lytical derivation presented in chapter 4.

9.3 Results

9.3.1 Experimental results

In the chapter 6 experimental validation was done for mode shapes and natural frequen-

cies of damaged beams using Euler-Bernoulli beam theory. The same experimental setup

and readings are used here to verify the existence of ‘damage signature’ as partial mode

contribution and its ability to identify the damage. It is also verified that partial mode

contribution is more sensitive to damage identification than the displacement or curvature

mode shapes for the damaged beam, or the difference between normalized displacement or

curvature mode shapes of the damaged and the undamaged beams. The effect of noise on

detection of damage is also studied.

The experimental process can be referenced in chapter 6. First four modes are used to

detect the damage for this beam. The noise in the measurement ambience is different for

different modes as can be seen from the experimental data plots of mode shapes in figure

15. The modes shapes in order of increasing noise are 4th, 2nd, 1st and 3rd. As found by

other researchers [53], the first mode is found to contain high ambient noise. The third

mode natural frequency coincides with one of the harmonics of the power supply (420Hz)
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and hence has high amount of ambient noise. These modes are not neglected because the

actual measurements in the field may have data with high ambient noise.

In the figure 15, the experimental data for mode shapes of damaged beam, curve-fitted

experimental data using the modes of undamaged beam, and analytical modes of the dam-

aged and undamaged beams are shown for mode numbers 1 to 4. In figure 16, the exper-

imental curvature shape for undamaged beam, experimental curvature for damaged beam

and analytically derived curvature for damaged and undamaged beam, is shown. All the

mode shapes and curvature shapes are normalized such that the maximum value is one.

It is seen that both the displacement mode shapes given in figure 15 and curvature mode

shapes given in figure 16, are similar and damage cannot be ascertained by looking at the

mode shapes.

Next in figure 17, the damage is ascertained using the difference between the normalized

displacement and curvature mode shapes for the damaged and undamaged cases . Difference

between normalized modes is plotted for: the experimental displacement of damaged beam

and the analytical displacement of undamaged beam, the experimental displacement of

damaged beam and the experimental displacement of undamaged beam, the analytical

displacement of damaged beam and the analytical displacement of undamaged beams, the

experimental curvature of damaged and the analytical curvature of undamaged beam, the

experimental curvature of damaged and the experimental curvature of undamaged beam and

the analytical curvature of damaged and the analytical analytical curvature of undamaged

beams.

The resulting curves are normalized such that the maximum value is one. The peaks

are used to determine the position of damage. The difference between the displacement

and curvature mode for the damaged and undamaged beams for the analytical case give

the damage location correctly. Among other curves the difference between experimentally

observed curvature of the damaged beam and analytically obtained curvature of the un-

damaged beam is able to predict the damage location correctly for the first three mode

shapes. The difference between experimentally observed displacement modes and curvature

modes of the damaged and undamaged cases is not able to give correct location of damage.
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The difference between experimental displacement mode and analytical displacement mode

is able to give the location of damage only for the third mode shape. Based on the above

observations, it is concluded that although difference between analytical mode shape give

the location of damage but this observation is not corroborated experimentally. The reason

for that is that the change in mode shapes due to small defects is extremely small, even

slight amount of numerical errors or experimental noise can compensate this change, and

hence not give the damage information. It is also seen that among the cases considered the

best results are for difference between experimental curvature for the damaged beam and

analytical curvature for the undamaged beam.

Next, the partial mode contribution is shown in figure 18. Four cases are considered:

partial mode contribution for displacement and curvature modes of damaged beams for the

experimental data and those for the analytical plots. The partial mode contribution for

the analytical displacement and the curvature mode shapes of damaged beams give a sharp

peak at the damage location. Similarly, the partial mode contribution for the experimental

data give sharp peaks at the damage location for all the curvature shapes. For the case

of displacement mode shapes, modes one, three and four are able to correctly identify

the damage. Therefore, it can be concluded that the partial mode contribution can be

effectively used to detect the position of damage. It is especially sensitive in the curvature

mode shapes of damaged beams. The noise in the case of mode shapes 1 and 3 did not have

an effect on determining the damage position. This was because mode shapes do not have a

magnitude. In the case of random and unbiased noise for every deviation on one side there

would be a corresponding compensating deviation on the other side such that the partial

mode contribution integrity was maintained. In case of random biased noise, the mode

shape would be shifted uniformly up or down, again maintaining the integrity of the shape.

However, in the case of a damage there is local deviation that is neither compensated nor

globally uniform, and hence a parameter which can detect this local change in mode shape

would be able to identify the damage. This is true in the case of partial mode contribution.
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Figure 15: Displacement mode shapes (normalized): experimental damaged mode (dots),
experimental data curve-fitted using undamaged modes (dashed), analytical undamaged
mode (red), analytical damaged mode (blue)
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Figure 16: Curvature shapes (normalized): experimental undamaged curvature (orange),
experimental damaged curvature (green), analytical undamaged curvature (red), analytical
damaged curvature (blue)
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Figure 17: Normalized difference between normalized damaged and undamaged,
mode shapes and curvature shapes: experimental-analytical mode (blue), experimental-
experimental mode (red), analytical-analytical mode (dashed), experimental-analytical cur-
vature (purple), experimental-experimental curvature (green), analytical-analytical curva-
ture (orange)
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Figure 18: damage signature (normalized partial mode contribution): experimental (red),
analytical (blue), displacement mode (solid line), curvature mode (dashed line)

93



www.manaraa.com

9.3.2 Finite element model results

The validity of the method is illustrated for different boundary conditions and also the rel-

ative sensitivity of the displacement mode shapes versus curvature mode shapes is assessed

using finite element method. A beam with three different boundary conditions modeled in

abaqus using two dimensional plane stress elements is used for the purpose. The beams

were modeled using Abaqus software. The length of the beam was 1 m, the cross sectional

dimensions were 0.02 m and 0.0201 m, respectively, the density was 7890 kg/m3, Young’s

modulus E = 210GPa and poisson’s ratio ν = 0.3. The slight change in the cross sectional

dimensions was necessitated to remove the coupling of modes in the two bending directions.

The curves of the damaged beam displacement and curvature mode shapes were nor-

malized such that the maximum value is one. The curves were subsequently curve-fitted

using modes of the undamaged beam for the same boundary condition. The effect of the

main mode (the mode which contributed the most to the curve-fitted data) was zeroed out.

The plots for the contribution of rest of the undamaged modes to the curve-fitted damaged

mode is given in figure 19. Since the modes shapes have been normalized, the sensitivity

of different modes can be determined. It is seen that curvature shapes are more sensitive

by an order of magnitude compared to displacement mode shapes, but they also have a

higher number of oscillations. The same sensitivity is shown for mode shapes 1 and 2 when

comparing displacement mode shapes with displacement mode shapes and curvature mode

shapes with curvature mode shapes for different boundary conditions.

9.3.3 Analytical results

The range of valid values for different damage parameters like location of damage ζd, depth

of damage ε and width of damage ∆Lz is explored in this section. The modes used are

derived using the analytical derivation, developed in the previous chapter. Beams with

four different boundary conditions, simply-supported, clamped-free, clamped-clamped and

propped-cantilever are considered. For all the plots the damage parameters are ζd = 0.35L,

ε = 0.1, ∆Lz = 0.01. First, in figure 20, the normalized modes of damaged beam using

the analytical expressions correct up to first order are given along side the normalized
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Figure 19: Damage signature of normalized modes and curvatures, mode 1 (red), mode 2
(blue)
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Figure 20: Damaged (dashed lines) and undamaged (continuous lines) beam mode shapes;
ζd = 0.35, ε = 0.1, ∆Lz = 0.01
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Figure 21: Damaged (dashed lines) and undamaged (continuous lines) beam curvature
shapes; ζd = 0.35, ε = 0.1, ∆Lz = 0.01
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Figure 22: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.01
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Figure 23: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.01; first twelve modes considered
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Figure 24: Damaged (dashed lines) and undamaged (continuous lines) beam mode shapes;
ζd = 0.5, ε = 0.1, ∆Lz = 0.01
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Figure 25: Damaged (dashed lines) and undamaged (continuous lines) beam curvature
shapes; ζd = 0.5, ε = 0.1, ∆Lz = 0.01

modes of undamaged beams. The first set of modes is given for simply-supported, second

set for clamped-free, third set for clamped-clamped, and fourth set for propped-cantilever

boundary conditions, respectively. Similarly in figure 21, the normalized curvature shapes

are given (same modes and same beams) for damaged and undamaged beams. Since Euler-

Bernoulli beam theory is considered, hence the plots are the same for any material or

geometric characteristics of the beam. However, that would not be the case if Timoshenko

beam theory is used. It is seen that mode profiles of damaged and undamaged beams are

similar and the damage cannot be identified just by looking at the mode profiles. Only the

first curvature mode of damaged case for simply-supported boundary condition, shows a

deviation from curvature mode shape of the undamaged case at the damage location.

Next, in figure 22 the difference of the normalized mode and the curvature shapes of

damaged and undamaged beam is given. The damage location can be identified only for

mode number one for simply-supported, and mode number two for clamped-free boundary

conditions, respectively. Damage cannot be identified for mode three and mode four for

clamped-clamped and propped-cantilever case, respectively. Figure 23 gives the plot of

R2(x) as defined in equation (132) for the mode shape and curvature shape. For example,

for the 2nd mode of damaged beam it gives the contribution of all the modes of undamaged

98



www.manaraa.com

beam other than the 2nd mode when using them to curve-fit the 2nd mode of the damaged

beam. Mode shapes up to the 12th mode are considered. Damage is identified for all the

mode shapes for all the different boundary conditions. The spike at the damage location is

muted in case of displacement modes but pronounced in case of curvatures. It is seen that,

different modes (curvature and displacement) for different beams are excited to varying

amounts at the damage location, but all modes show clear indication of damage.

To study the phenomenon further, parametric studies are performed on different damage

parameters. Since Euler-Bernoulli beam is considered, the only parameters effecting the

mode shapes are the three damage parameters, the location of damage ζd, the depth of

damage ε and the extent of damage ∆Lz. First set of plots are given for the location of

damage at ζd = 0.5 and ζd = 0.7. The case of ζd = 0.35 has already been considered in

the plots given in figures 20-23. The rest of the parameters remain the same as earlier

i.e. ε = 0.1 and ∆Lz = 0.01. The mode shapes for the first case are given in figure

24, curvature shapes in figure 25, difference of normalized modes in figure 26 and partial

mode contribution (R2(x)) in figure 27. Similarly for the second case ζd = 0.7, the plots

are given in figure 28 for mode shapes, figure 29 for curvature shapes, figure 30 for the

difference between normalized modes and figure 31 for the partial mode contribution. The

observations from the figures are on similar lines as from the first set of figures 20, 21, 22

and 23, i.e., none of the three quantities the mode shapes, or the curvature shapes or the

difference between normalized modes and curvature shapes are able to identify the damage

for the four kinds of beams considered. However, the ‘damage signature’ in the form of

partial mode contribution is able to identify the damage for all the twelve cases considered.

The next damage parameter considered is ε that gives the ratio of the depth of damage

to the total depth of the beam. Two cases are considered ε = 0.01 and ε = 0.4 along with

the one already considered before that of ε = 0.1. The plots for the mode shapes are similar

to those for the figure 20 so they are not given again. The curvature shapes for the case

ε = 0.01 are again similar to that for figure 21. However, when the damage depth increases

to ε = 0.4, there is more clear indication of damage location in the curvature mode shape

for the mode one of simply-supported, and mode two of clamped-free beams. The damage
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was still not identified using the curvature shapes for clamped-clamped case and propped-

cantilever case. The plots for curvature shapes for ε = 0.4 is given in figure 34. The modal

difference for the normalized modes is given in figures 32 and 35 for the cases ε = 0.01 and

ε = 0.4, respectively. In the former, the damage location is less marked for the simply-

supported and clamped-free boundary condition cases but it is still distinguishable. The

damage location is again not identified for both clamped-clamped and propped-cantilever

cases for both the ε values considered. The damage signature plots are presented in figures

33 and 36. The damage location is clearly identified for all the cases.

The change in the scale of both the modal difference and damage signature plots for

the case of ε = 0.4 should be noted. It changes from 0.2 to 0.7 for the modal difference

plots because the modal difference increases between the modes of damaged and undamaged

beams. However, there was no corresponding positive effect on the damage identification.

It changed from 0.03 to 0.1 for the damage signature plots. There was positive effect on

damage identification in these cases, since the peaks became of higher magnitude.

The last damage parameter i.e. the extent of damage is investigated next. The two cases

considered are for ∆Lz = 0.001 and ∆Lz = 0.1 along with the case ∆Lz = 0.01 considered

earlier. The mode shapes are similar in characteristics to the plots in the figure 20 for both

the cases. The curvature shape too has same characteristics for the case of ∆Lz = 0.001.

However, for the case of ∆Lz = 0.1 the damage is more prominently identified. The

curvature shapes for ∆Lz = 0.1 are given in figure 39. The modal difference plots are given

in figures 37 and 40. None of the four modes are identified the damage for the first case

∆Lz = 0.001. For the second case ∆Lz = 0.1, the peaks becomes sharper for the first

mode of the simply-supported case, and the second mode of the clamped-free case. The

third mode with clamped-clamped boundary condition still does not give any indication of

damage. An important feature is that the propped-cantilever mode 4 gives an incorrect

indication for the location of damage.

The plots giving the damage signature are given in figures 38 and 41. The y-axis range

for the plots is increased from 0.03 to 0.3 to be able to see the peaks clearly for the case

when ∆Lz = 0.1. Unlike the normalized modal difference plots, the damage can still be
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Figure 26: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.5, ε = 0.1, ∆Lz = 0.01

identified for the case of ∆Lz = 0.001, although the peaks are diminished. Also, unlike the

normalized modal difference plots, there are no false damage locations identified.

9.4 Conclusions

• A new physical quantity, damage signature expressed as ‘partial mode contribution’ is

physically explained in the introduction, equation (132), and verified by the analytical

derivation, as given by equation (136). An application of partial mode contribution,

to damage identification in the field of SHM is presented.

• The method outlined was able to address the two challenges in the field of vibration

based SHM, that of

1. sensitivity, since the presented quantity, partial mode contribution was shown

to be more sensitive than existing physical quantities like displacement mode

shapes, curvature mode shapes and difference of normalized displacement or

curvature shape between damaged and undamaged states of the beam. The

sensitivity was maintained even for mode shapes which had experimental noise.

Also the sensitivity was uniform when mode shapes were compared for different

boundary conditions.
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Figure 27: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.5, ε = 0.1, ∆Lz = 0.01; first twelve modes considered
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Figure 28: Damaged (dashed lines) and undamaged (continuous lines) beam mode shapes;
ζd = 0.7, ε = 0.1, ∆Lz = 0.01
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Figure 29: Damaged (dashed lines) and undamaged (continuous lines) beam curvature
shapes; ζd = 0.7, ε = 0.1, ∆Lz = 0.01
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Figure 30: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.7, ε = 0.1, ∆Lz = 0.01

103



www.manaraa.com

0.2 0.4 0.6 0.8 1.0
z

-0.03

-0.02

-0.01

0.01

0.02

0.03
R2 HzL

Simply supported mode number 1

0.2 0.4 0.6 0.8 1.0
z

-0.03

-0.02

-0.01

0.01

0.02

0.03
R2 HzL

Clamped free mode number 2

          

0.2 0.4 0.6 0.8 1.0
z

-0.03

-0.02

-0.01

0.01

0.02

0.03
R2 HzL

Clamped clamped mode number 3

0.2 0.4 0.6 0.8 1.0
z

-0.03

-0.02

-0.01

0.01

0.02

0.03
R2 HzL

Propped cantilever mode number 4

  

Figure 31: Partial mode contribution, mode shape(continuous lines) and curvature
shape(dashed lines); ζd = 0.7, ε = 0.1, ∆Lz = 0.01; first twelve modes considered
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Figure 32: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.35, ε = 0.01, ∆Lz = 0.01
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Figure 33: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.35, ε = 0.01, ∆Lz = 0.01; first twelve modes considered
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Figure 34: Damaged (dashed lines) and undamaged (continuous lines) beam curvature
shapes; ζd = 0.35, ε = 0.4, ∆Lz = 0.01
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Figure 35: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.35, ε = 0.4, ∆Lz = 0.01
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Figure 36: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.35, ε = 0.4, ∆Lz = 0.01; first twelve modes considered
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Figure 37: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape (dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.001
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Figure 38: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.001; first twelve modes considered
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Figure 39: Damaged (dashed lines) and undamaged (continuous lines) beam curvature
shapes; ζd = 0.35, ε = 0.1, ∆Lz = 0.1
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Figure 40: Difference between damaged and undamaged beam, normalized, mode shape
(continuous lines) and curvature shape(dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.1
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Figure 41: Partial mode contribution, mode shape (continuous lines) and curvature shape
(dashed lines); ζd = 0.35, ε = 0.1, ∆Lz = 0.1; first twelve modes considered

2. requirement of baseline data from undamaged structural state, since presented

physical quantity did not require a baseline to identify the damage.

• The difference between normalized mode shapes and curvature shapes gives a false

indication of damage for the propped-cantilever case as shown in figure 40.

• Partial mode contribution is a primary physical quantity and does not require deriva-

tive numerical processes as required by natural frequencies and strain energy based

damage identification procedures for damage identification.

• Similar to the derivative procedures for displacement and curvature mode shapes such

as calculation of strain energy, derivative procedures for partial mode contribution can

be investigated for damage characterization and quantification.

• The method was applied to structures using Euler-Bernoulli beam theory. It was seen

that the order of sensitivity was same for different boundary conditions. The sensi-

tivity however was greater for curvature mode shapes as compared to displacement

mode shape as were the number of oscillations.

• The ability of these two parameters to detect damage can be studied for different
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levels of noise in the measured data.

• The lack of dependence of partial mode contribution to environmental conditions like

temperature is also a matter for further investigation by the author.
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Chapter X

CONTRIBUTIONS AND RECOMMENDATION FOR FUTURE

STUDIES

10.1 Contributions

The thesis has the following contributions:

1. The thesis provides a generic framework to model damage in elastic structures which

are self adjoint systems. Specifically the framework was applied to Euler-Bernoulli

beam theory, Timoshenko beam theory and Kirchhoff’s plate theory. The framework

was applied to beams with different shapes. The framework was applied to an ex-

haustive set of boundary conditions. Damage models for different shapes of damage

in beams and different orientation of damage in plates were presented.

2. The framework is applicable to eigenvalue problems with discontinuities for self adjoint

systems.

3. The inertia effects (kinetic energy) due to damage were included in modeling, and it

was shown that they are not negligible as compared to stiffness effects (strain energy).

4. An analytical expression for a damage index based on strain energy was presented

and experimentally verified.

5. Physical reasoning was provided for a new damage identification quantity called the

“Partial Mode Contribution” and it was verified using rigorous mathematical proce-

dure. The quantity was shown to be more sensitive than existing damage detection

quantities such as displacement mode shapes, curvature mode shapes and difference of

normalized displacement or curvature shape between damaged and undamaged states

of the beam. Partial mode contribution was able to give accurate estimations of the

location of damage in spite of noise in the detection ambience. The quantity was

shown to not require baseline state data.
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10.2 Recommendation For Future Studies

1. The perturbed differential equations that were developed are in the same form as

those that are used to develop finite elements. The displacement in finite element

procedure is replace with perturbed eigenfunction and the forcing function with the

right hand side of the perturbed differential equation. Therefore, it is proposed to

develop a finite element formulation based on the method presented in this thesis.

Such a formulation would reduce significantly the computation time associated to

determine mode shapes and natural frequencies of a damaged structure. Consider a

simple beam, initially when no damage is there the dynamic response is computed

accurately using few beam elements, however, if there is a small damage introduced,

several plate finite elements of a high density mesh, at least in the vicinity of the

damage are needed. Using the framework, the same mesh as used for undamaged

case would be used with the beam element at the location of damage substituted with

damaged beam element.

2. The method presented in this thesis is essentially a solution to an eigenvalue problem

with discontinuous domains for systems which are self adjoint systems. Self adjoint

systems form a very large class of physical problem set. It is therefore proposed

to apply to see the validity of the framework to other self-adjoint systems such as

computing the buckling load of damaged beams, getting the mode shapes of tapered

beams and Mindlin plate theory.

3. In the presentation of the damage measure based on the strain energy, two damage

parameters were discovered one giving global damage influence Γ(x, xd,∆l, ε) and

another giving acute local damage influence Λ(xd,∆l, ε), where xd, ∆l and ε give the

location, extent and ratio of depth to total depth of the damage, respectively. Since

Λ(xd,∆l, ε) is a function of damage magnitude (ε and ∆l), the damage measure can

be used to find the damage magnitude. This is a topic for further study.

4. It has been found by previous researchers that derivative quantities such as curvature

shapes, strains and strain energy are more sensitive to damage than mode shapes
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themselves. It is therefore recommended to explore the derivative quantities associated

with the partial mode contribution for damage detection and characterization.

5. The lack of dependence of partial mode contribution to environmental conditions like

temperature is also a matter for further investigation by the author.

6. An interesting parameter that arose in the derivation was ηnj , which is the coefficient

of eigenfunctions for the undamaged beam when used to find the particular solution

for perturbed differential equations. The physical significance of this parameter and

its ability to identify and characterize damage can be investigated.
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